The global stability and optimal control of the COVID-19 epidemic model  

在线阅读下载全文

作  者:Fengsheng Chien Hassan Saberi Nik Mohammad Shiraziant J.F.Gomez-Aguilar 

机构地区:[1]School of Finance and Accounting Fuzhou University of International Studies and Trade Fuzhou 352020,P.R.China [2]Faculty of Business,City university of Macao Macao 999078,P.R.China [3]Department of Mathematics and Statistics University of Neyshabur,Neyshabur,Iran [4]CONACyT-Tecnologico Nacional de Mécico/CENIDET Interior Internado Palmira S/N,Col.Palmira C.P.62490,Cuernavaca,Morelos,Mérico

出  处:《International Journal of Biomathematics》2024年第1期1-28,共28页生物数学学报(英文版)

基  金:Jose Francisco Gomez Aguilar acknowledges the support provided by CONACyT:Catedras CONACyT para jovenes investigadores 2014 and SNI-CONACyT.

摘  要:This paper considers stability analysis of a Susceptible-Exposed-Infected-Recovered-Virus(SEIRV)model with nonlinear incidence rates and indicates the severity and weakness of control factors for disease transmission.The Lyapunov function using Volterra-Lyapunov matrices makes it possible to study the global stability of the endemic equilibrium point.An optimal control strategy is proposed to prevent the spread of coronavirus,in addition to governmental intervention.The objective is to minimize together with the quantity of infected and exposed individuals while minimizing the total costs of treatment.A numerical study of the model is also carried out to investigate the analytical results.

关 键 词:Global stability SEIRV epidemic model dynamical systems Volterra-Lyapunov stability optimal control 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象