Global dynamics of a Leslie-Gower predator-prey model in open advective environments  

在线阅读下载全文

作  者:Baifeng Zhang Guohong Zhang Xiaoli Wang 

机构地区:[1]School of Mathematics and Statistics Southwest University Chongqing,400715,P.R.China

出  处:《International Journal of Biomathematics》2024年第3期241-264,共24页生物数学学报(英文版)

基  金:supported by the National Natural Science Foundation of China(11871403);Fundamental Research Funds for the Central Universities(XDJK2020B050).

摘  要:This paper investigates the global dynamics of a reaction-diffusion-advection Leslie-Gower predator-prey model in open advective environments.We find that there exist critical advection rates,intrinsic growth rates,diffusion rates and length of the domain,which classify the global dynamics of the Leslie-Gower predator-prey system into three scenarios:coexistence,persistence of prey only and extinction of both species.The results reveal some significant differences with the classical specialist and generalist predator-prey systems.In particular,it is found that the critical advection rates of prey and predator are independent of each other and the parameters about predation rate have no influence on the dynamics of system.The theoretical results provide some interesting highlights in ecological protection in streams or rivers.

关 键 词:Leslie Gower predator-prey system advection global dynamics COEXISTENCE EXTINCTION 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象