检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Baifeng Zhang Guohong Zhang Xiaoli Wang
机构地区:[1]School of Mathematics and Statistics Southwest University Chongqing,400715,P.R.China
出 处:《International Journal of Biomathematics》2024年第3期241-264,共24页生物数学学报(英文版)
基 金:supported by the National Natural Science Foundation of China(11871403);Fundamental Research Funds for the Central Universities(XDJK2020B050).
摘 要:This paper investigates the global dynamics of a reaction-diffusion-advection Leslie-Gower predator-prey model in open advective environments.We find that there exist critical advection rates,intrinsic growth rates,diffusion rates and length of the domain,which classify the global dynamics of the Leslie-Gower predator-prey system into three scenarios:coexistence,persistence of prey only and extinction of both species.The results reveal some significant differences with the classical specialist and generalist predator-prey systems.In particular,it is found that the critical advection rates of prey and predator are independent of each other and the parameters about predation rate have no influence on the dynamics of system.The theoretical results provide some interesting highlights in ecological protection in streams or rivers.
关 键 词:Leslie Gower predator-prey system advection global dynamics COEXISTENCE EXTINCTION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.91