检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谈玲[1,2] 曹博源 夏景明[3] 刘玉风 TAN Ling;CAO Boyuan;XIA Jingming;LIU Yufeng(School of Computer Science/School of Cyber Science and Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China;Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET),Nanjing University of Information Science and Technology,Nanjing 210044,China;School of Artificial Intelligence,Nanjing University of Information Science and Technology,Nanjing 210044,China;School of Software,Nanjing University of Information Science and Technology,Nanjing 210044,China)
机构地区:[1]南京信息工程大学计算机学院、网络空间安全学院,南京210044 [2]南京信息工程大学江苏省大气环境与装备技术协同创新中心,南京210044 [3]南京信息工程大学人工智能学院,南京210044 [4]南京信息工程大学软件学院,南京210044
出 处:《电讯技术》2024年第6期910-919,共10页Telecommunication Engineering
基 金:国家自然科学基金资助项目(62271264)。
摘 要:当物联网设备(Internet of Things Device,IoTD)面临随机到达且复杂度高的计算任务时,因自身计算资源和能力所限,无法进行实时高效的处理。为了应对此类问题,设计了一种两层无人机辅助的移动边缘计算(Mobile Edge Computing,MEC)模型。在该模型中,考虑到IoTD处理随机计算任务时的局限性,引入多架配备MEC服务器的下层无人机和单架上层无人机进行协同处理。为了实现系统能耗最优化,提出了一种资源优化和多无人机位置部署方案,根据计算任务到达的随机性,应用李雅普诺夫优化方法将能耗最小化问题转化为一个确定性问题,应用差分进化(Differential Evolution,DE)算法进行多次变异、交叉和选择取得无人机的优化部署方案;采用深度确定性策略梯度(Depth Deterministic policy Gradient,DDPG)算法对带宽分配、计算资源分配、传输功率分配和任务卸载分配进行联合优化。实验结果表明,该算法相较于对比算法系统能耗降低35%,充分验证了其可行性和有效性。Internet of Things device(IoTD)cannot process the randomly and highly complex computing tasks in a timely and efficient manner due to insufficient computing resources and capabilities.To solve such problems,a two-layer unmanned aerial vehicle(UAV)-assisted mobile edge computing(MEC)model.It gives sufficient consideration of the limitation of IoTD in handling random computing tasks,and introduces multiple low-altitude UAVs equipped with MEC servers and a single high-altitude UAV for assistance.To optimize the system energy consumption,a resource optimization and multi-UAV location deployment scheme is proposed.According to the randomness of the calculation task,the Lyapunov optimization method is applied to transform the energy consumption minimization problem into a deterministic problem.To carry out multiple mutations,crossover and selection,the Differential Evolution(DE)algorithm is used to obtain the optimal UAV deployment scheme.Besides,the Depth Deterministic Policy Gradient(DDPG)algorithm is adopted to optimize the bandwidth allocation,computation resource allocation,transmission power allocation and task offload allocation.Experimental results show that compared with the comparison algorithm,the proposed method can significantly reduce the energy consumption by 35%,which fully verifies its feasibility and effectiveness.
关 键 词:无人机(UAV) 能耗优化 移动边缘计算(MEC) 随机计算卸载
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127