KrF深紫外光刻投影物镜光机热集成分析与优化  

Opto-Mechanical Thermal Integration Analysis and Optimization of KrF Deep Ultraviolet Lithography Projection Lens

在线阅读下载全文

作  者:韩星 江伦[1,2] 李延伟 李骏驰 Han Xing;Jiang Lun;Li Yanwei;Li Junchi(School of Optoelectronic Engineering,Changchun University of Science and Technology,Changchun 130022,Jilin,China;National and Local Joint Engineering Research Center of Space Photoelectric Technology,Changchun University of Science and Technology,Changchun 130022,Jilin,China;Ji Hua Laboratory,Foshan 528200,Guangdong,China)

机构地区:[1]长春理工大学光电工程学院,吉林长春130022 [2]长春理工大学空间光电技术国家地方联合工程中心,吉林长春130022 [3]季华实验室,广东佛山528200

出  处:《光学学报》2024年第7期139-149,共11页Acta Optica Sinica

基  金:吉林省重大科技专项课题(20230301002GX);涂胶显影工艺自动光学检测单元智能服务系统研发关键技术攻关(S220711VH220)。

摘  要:提出了一种融合新型支撑方式与灵敏度分析的光机热集成分析与优化方法,用于设计超高精度深紫外光刻投影物镜系统。首先,采用轴向多点与周向三点胶接支撑相结合的新型支撑方式,实现了212.51 mm口径光学元件的超高精度定位要求。其次,通过对光学元件进行热力耦合分析,验证了光机系统的合理性。然后,在光机热集成分析条件下,分析了单个光学元件的灵敏度,以及全部光学元件表面变形对整体光学系统波像差均方根值和校准F-tanθ(F为焦距,θ为物方视场角)畸变的影响。最后,通过调整部分光学元件的灵敏度进行局部优化,并对整体光学系统的像质进行优化。结果表明:在热力耦合条件(参考温度为22.5℃、极限工作温度为±2.5℃、重力)下,光学元件的最大表面面型均方根(RMS)值为9.86 nm,能够满足超高精度定位要求。在光机热集成分析条件下(参考温度为22.5℃、极限工作温度为±2℃、重力),优化后光学系统的波像差RMS值小于10.50 nm,校准F-tanθ畸变小于6.00 nm,相较于优化前,波像差RMS提升了46.98%,校准F-tanθ畸变提升了77.69%,达到了设计要求。Objective To achieve the design of high-precision deep ultraviolet lithography projection lenses,we propose a method for opto-mechanical thermal integration analysis and optimization of deep ultraviolet lithography projection lenses.This method can analyze the influence of factors such as gravity,mechanical support structure,and temperature variations on the image quality of the optical system during the design phase.A novel support mechanism combining axial multi-point and circumferential three-point adhesive supports is designed to meet the requirements of ultra-high-precision positioning of the optical elements.Meanwhile,sensitivity analysis is conducted on individual optical elements using the sensitivity analysis method to optimize the image quality in opto-mechanical thermal integration analysis conditions,which provides insights and directions for improving the image quality of the optical system.Methods Initially,an innovative support mechanism combining axial multi-point and circumferential three-point adhesive supports is employed to achieve ultra-high precision positioning requirements for a 212.51 mm aperture optical element.Subsequently,the thermal-mechanical coupling analysis of the novel support structure is conducted using the finite element analysis method.The obtained results are adopted in a developed Fringe Zernike polynomial fitting program to compute the surface peak valley(PV)and root mean square(RMS)of the optical element and thus validate the rationality of the optomechanical structure.Furthermore,the SigFit software serves as the opto-mechanical interface software,enabling the analysis of individual optical element sensitivity and the influence of overall optical element surface deformations on the wavefront aberration RMS value and calibration of F-tanθdistortion within the opto-mechanical thermal integration analysis framework.Finally,localized optimization is performed on elements with high sensitivity to reduce their sensitivity and ultimately optimize the image quality of the entir

关 键 词:光学设计 结构设计 光机热集成分析 ZERNIKE多项式 有限元分析 

分 类 号:O436[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象