基于全地形机器人的地下深空间涵管检测技术应用研究  

Application Research of Underground Deep Space Culvert Detection Technology Based on All-Terrain Robot

在线阅读下载全文

作  者:王豪威 贾永斌[1] WANG Hao-wei;JIA Yong-bin(Airborne Survey and Remote Sensing Center of Nuclear Industry,Shijiazhuang Hebei 050002,China)

机构地区:[1]核工业航测遥感中心,河北石家庄050002

出  处:《现代测绘》2024年第1期44-47,共4页Modern Surveying and Mapping

摘  要:涵管一般具有掩埋深、内部情况不明、结构复杂等特点,常规的缺陷检测技术易受管径、埋深、水深、淤积条件等诸多因素的影响,无法满足涵管检测工作要求。对于管道检测工作,目前国内科研人员在雨污水管道缺陷检测技术方面已经十分成熟,然而在地下深空间涵管检测方面研究相对缓慢,尤其是针对核电厂涵管的检测技术研究更少。以核电厂循环冷却水涵管为研究对象,系统地介绍水下机器人检测、全地形机器人检测、无人机飞行球检测技术的工作原理、适用情况和缺陷检测数据后处理方法,并结合工程实践,验证了全地形机器人在涵管检测任务中的应用效果,为以后类似工程的实施提供一定的借鉴意义。Culvert pipe generally has the characteristics of buried depth,internal situation unknown,complex structure,conventional defect detection technology is susceptible to pipe diameter,buried depth,water depth,sedimentation conditions and many other factors,can not meet the requirements of culvert detection.For pipeline detection,at present,domestic researchers have been very mature in the detection technology of rain sewer pipe defects,but the research on the detection technology of underground deep space culverts is relatively slow,especially the research on the detection technology of culverts in nuclear power plants is less.In nuclear power plant cooling water culvert pipe as the research object,this paper systematically introduces diving detecting robot,all-terrain robots,unmanned aerial vehicle flight test technology,and the working principle,applicable conditions and defect detection data post-processing methods,and combined with engineering practice,to verify the all-terrain effect of application of robot in the culvert testing tasks,provide certain reference for the implementation of similar projects in the future.

关 键 词:涵管 缺陷检测 数据后处理 结构性缺陷 功能性缺陷 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] TU992[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象