基于遗传算法的剪力墙结构设计优化方法  被引量:1

Optimization method of shear wall structural design based on genetic algorithm

在线阅读下载全文

作  者:陈学伟 李展铨 CHEN Xuewei;LI Zhanquan(WSP Hong Kong,Ltd.,Hong Kong 999077,China;School of Civil Engineering&Transportation,South China University of Technology,Guangzhou 510630,China)

机构地区:[1]WSP科进香港有限公司,中国香港999077 [2]华南理工大学土木与交通学院,广州510630

出  处:《建筑结构》2024年第11期69-76,共8页Building Structure

摘  要:剪力墙结构体系的高层结构容易出现剪力墙偏心布置的问题,同时引起其在水平作用下抗扭性能不足的问题。通过分析遗传算法的优点及适用性,确定采用遗传算法以实现对剪力墙抗扭性能优化问题。具体讨论了基于遗传算法的优化方法条件的设定,并阐述了基于遗传算法对剪力墙优化的具体步骤。以某工程项目建筑结构作为模型算例,对其简化模型进行基于遗传算法的400代迭代优化,并对优化后的原建筑模型进行验证。结果表明基于遗传算法对剪力墙结构的优化效果良好,优化后的剪力墙结构在水平荷载作用与扭转作用下楼层位移比能得到有效的降低,证明了基于遗传算法对高层剪力墙结构优化的可行性。High⁃rise structures of shear wall structural system are prone to the problem of eccentric layout of shear walls,which also causes the problem of their insufficient torsional resistance under horizontal action.By analyzing the advantages and applicability of genetic algorithm,the genetic algorithm was determined to be used to achieve the problem of optimizing the torsional performance of shear walls.The setting of the conditions of the optimization method based on genetic algorithm was discussed specifically,and the specific steps of the optimization of shear walls based on genetic algorithm were described.Taking an engineering building structure model as an example,the simplified model was optimized based on genetic algorithm for 400 iterations,and the original model of the optimized building was verified.The results show that the optimization of shear wall structure based on genetic algorithm is effective,and the optimized shear wall structure can effectively reduce the floor displacement ratio under horizontal and torsional action,which proves the feasibility of optimization of high⁃rise shear wall structure based on genetic algorithm.

关 键 词:剪力墙结构 遗传算法 优化设计 楼层位移比 

分 类 号:TU398.2[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象