检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余成志 刘潇 唐军 夏辉 Chengzhi Yu;Xiao Liu;Jun Tang;Hui Xia(School of Materials Science and Physics,China University of Mining and Technology,Xuzhou 221116,China)
出 处:《Chinese Physics B》2024年第6期298-307,共10页中国物理B(英文版)
基 金:supported by Undergraduate Training Program for Innovation and Entrepreneurship of China University of Mining and Technology (CUMT)(Grant No. 202110290059Z);Fundamental Research Funds for the Central Universities of CUMT (Grant No. 2020ZDPYMS33)。
摘 要:Extensive numerical simulations and scaling analysis are performed to investigate competitive growth between the linear and nonlinear stochastic dynamic growth systems, which belong to the Edwards–Wilkinson(EW) and Kardar–Parisi–Zhang(KPZ) universality classes, respectively. The linear growth systems include the EW equation and the model of random deposition with surface relaxation(RDSR), the nonlinear growth systems involve the KPZ equation and typical discrete models including ballistic deposition(BD), etching, and restricted solid on solid(RSOS). The scaling exponents are obtained in both the(1 + 1)-and(2 + 1)-dimensional competitive growth with the nonlinear growth probability p and the linear proportion 1-p. Our results show that, when p changes from 0 to 1, there exist non-trivial crossover effects from EW to KPZ universality classes based on different competitive growth rules. Furthermore, the growth rate and the porosity are also estimated within various linear and nonlinear growths of cooperation and competition.
关 键 词:competitive growth scaling behavior discrete growth model Kardar–Parisi–Zhang universality class
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38