检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:严炜炜[1] 曹灿瑜 Yan Weiwei;Cao Canyu(School of Information Management,Wuhan University,Wuhan 430072,China)
出 处:《现代情报》2024年第7期47-59,共13页Journal of Modern Information
基 金:国家自然科学基金面上项目“情境意识驱动的跨平台知识交流行为及其价值共创研究”(项目编号:72374159);中央高校基本科研业务费专项基金资助项目“多元社区情境下用户知识交流价值识别与共创研究”(项目编号:2042023kf0173)。
摘 要:[目的/意义]基于多平台视角挖掘用户知识交流主题特征,构建用户画像标签体系,有助于全面理解用户利用差异化平台开展知识交流行为的规律偏好,为平台提供精确优化策略,为平台间生态建设提供参考依据。[方法/过程]采集大众社交平台、兴趣交流平台、垂直知识平台3类典型平台中ChatGPT话题相关的原创博文及用户数据,采用BERTopic模型凝练知识交流主题,结合多平台数据特点,从自然属性、社会属性、知识交流行为属性和知识交流主题属性4个维度抽出画像标签,通过K-means聚类实现用户画像,呈现群组特征并进行平台差异对比。[结果/结论]研究识别出了应用场景、行业进展、未来探讨、相关产业、咨询求助、热门话题、使用感受、风险监督8大知识交流方向及46个主题;根据属性特征将用户划分为专业贡献型、综合共享型、社交求知型和话题潜力型4类,平台间知识交流主题和用户画像存在显著差异,各平台应采取差异化的激励方式,增强平台用户黏性。[Purpose/Significance]The study aims to understand users preferences of knowledge exchange on different platforms can be achieved by analyzing the topics discussed across multiple platforms,and construct a user portrait labeling system,which can help platforms provide more personalized optimization strategies and improve interplatform ecological construction.[Method/Process]The study collected original blog posts and user data related to ChatGPT topics from three typical platforms:mass social platform,interest exchange platform,and vertical knowledge community.Next the BERTopic model was adopted to condense knowledge exchange topics.Then,the study extracted portrait labels from four dimensions:natural attributes,social attributes,knowledge exchange behavioral attributes,and knowledge exchange thematic attributes.To realize user profiles,present group characteristics,and compare platform differences,the study used K-means clustering to implement a user portrait labeling system.[Result/Conclusion]The study has identified 46 different topics and directions for knowledge exchange on 8 major cutting-edge science and technology subjects.These subjects include application scenarios,industry progress,future exploration,related industries,consultation and help,hot topics,experience of use,and risk supervision.Furthermore,the study has classified the users into 4 categories based on their attribute characteristics.These categories are professional contribution,comprehensive sharing,social knowledge-seeking,and topic potential.The study also finds significant differences between platforms in terms of knowledge exchange topics and user profiles.Therefore,platforms should adopt differentiated incentives to enhance platform user stickiness.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30