机构地区:[1]哈尔滨工业大学光电子信息科学与技术系,黑龙江哈尔滨150080 [2]哈尔滨工业大学可调谐激光技术国家级重点实验室,黑龙江哈尔滨150080
出 处:《中国激光》2024年第7期132-150,共19页Chinese Journal of Lasers
基 金:国家自然科学基金(62005066,61875045)。
摘 要:毛细管放电极紫外激光是一种小型化的纳秒极紫外激光光源。相比自由电子激光和同步辐射等短波长光源,该光源具有运行成本低、单脉冲能量高和机时充足等显著优势。随着毛细管放电极紫外激光光源的发展,其输出已提高至深度饱和区,并且实现了重复频率输出、多波长输出等多样化输出方式。小型化的灵活性和优质的输出参数使其逐渐成为进行极紫外激光应用研究的理想光源。本文介绍了自1994年毛细管放电极紫外激光成功输出至今,该光源在微纳结构加工、物质成分检测、生物科学以及高分辨成像等领域的前沿应用。在微纳加工方面,极短的波长和极小的能量衰减深度使得该光源能够在纳米量程内进行材料的刻蚀。同时,较长的激光脉宽增加了极紫外激光诱导自组织微纳结构的可能性。在物质成分检测方面,极紫外激光的高能量光子能够以单光子电离材料表面,结合飞行时间质谱仪测量纳米尺度范围内的材料成分,便可实现超高分辨的物质组成分布检测。在生物科学领域,极紫外激光能够实现对微观生物样本的三维成分扫描,获得更多的表征信息。在高分辨成像方面,基于极紫外激光的短波长和良好的相干性,以Gabor同轴等方法进行高分辨成像能达到接近照明光水平的成像分辨率。已有的应用成果表明,毛细管放电极紫外激光是探索微观世界、制造微观结构的有力工具。在人类对短波长光源需求日益增长的今天,毛细管放电极紫外激光将有更多的机会展现它的应用价值和优势。Significance Laser development represents a significant leap forward in the history of human science.The aggregation of billions(or potentially more)of photons in the same mode makes the laser the“brightest light”,“fastest knife”and“most accurate ruler”.Rapid laser source development and related technologies have promoted numerous breakthrough advances in the military,civilian and fundamental scientific fields.The lasers application areas are related to the laser source output parameters.When the laser output wavelength is shortened to extreme ultraviolet(EUV)and X-ray bands,the high photon energy produced by the light source and the extremely small diffraction limit make these short wavelength radiation sources favorable tools for exploring the microscopic world through cutting-edge scientific research.This includes micro-nano scale imaging and measurement,high-temperature,high-density plasma diagnostics,and high-resolution nanostructure generation.Wavelength shortening has introduced many laser generation difficulties.To achieve short-wavelength laser output,scientists worldwide have invested significant effort into constructing large-scale short-wavelength laser sources,such as LCLS,LCLS-II in the USA and SXFEL,DCLS in China.Current research on such laser sources represents humanity’s exploration of the material essence forefront and the deepest understanding of nature.Large-scale short-wavelength laser sources generate high-quality laser outputs,leading to significant scientific research achievements.However,some drawbacks exist including high operating costs and complex operation processes,thus,making it difficult to address the high demand for laser utilization in fundamental scientific research.In this situation,how to miniaturize short-wavelength laser has gained attention.Capillary discharge pumping is a proven mechanism for achieving miniaturized EUV laser output.International research groups have been studying this field since Rocca demonstrated this type of laser output in 1994.In 2004,t
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...