THE GLOBAL EXISTENCE OF STRONG SOLUTIONS FOR A NON-ISOTHERMAL IDEAL GAS SYSTEM  

在线阅读下载全文

作  者:韩斌 赖宁安 Andrei TARFULEA Bin HAN;Ningan LAI;Andrei TARFULEA;Corresponding author:(Department of Mathematics,Hangzhou Dianzi University,Hangzhou,310018,China;School of Mathematical Sciences,Zhejiang Normal University,Jinhua,321004,China;Department of Mathematics,Louisiana State University,Baton Rouge,70803,USA)

机构地区:[1]Department of Mathematics,Hangzhou Dianzi University,Hangzhou,310018,China [2]School of Mathematical Sciences,Zhejiang Normal University,Jinhua,321004,China [3]Department of Mathematics,Louisiana State University,Baton Rouge,70803,USA

出  处:《Acta Mathematica Scientia》2024年第3期865-886,共22页数学物理学报(B辑英文版)

基  金:partially supported by the Zhejiang Province Science Fund(LY21A010009);partially supported by the National Science Foundation of China(12271487,12171097);partially supported by the National Science Foundation(DMS-2012333,DMS-2108209)。

摘  要:We investigate the global existence of strong solutions to a non-isothermal ideal gas model derived from an energy variational approach.We first show the global wellposedness in the Sobolev space H^(2)(R^(3)) for solutions near equilibrium through iterated energy-type bounds and a continuity argument.We then prove the global well-posedness in the critical Besov space B^(3/2)_(2,1) by showing that the linearized operator is a contraction mapping under the right circumstances.

关 键 词:thermal fluid equations energy-variational method well-posedness theory for PDE paraproduct calculus 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象