THE LIMIT CYCLE BIFURCATIONS OF A WHIRLING PENDULUM WITH PIECEWISE SMOOTH PERTURBATIONS  

在线阅读下载全文

作  者:杨纪华 Jihua YANG(School of Mathematics and Computer Science,Ningxia Normal University,Guyuan,756000,China;Ningxia Basic Science Research Center of Mathematics,Yinchuan,750000,China)

机构地区:[1]School of Mathematics and Computer Science,Ningxia Normal University,Guyuan,756000,China [2]Ningxia Basic Science Research Center of Mathematics,Yinchuan,750000,China

出  处:《Acta Mathematica Scientia》2024年第3期1115-1144,共30页数学物理学报(B辑英文版)

基  金:supported by the Natural Science Foundation of Ningxia(2022AAC05044);the National Natural Science Foundation of China(12161069)。

摘  要:This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0.The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained using the Picard-Fuchs equations,which the generating functions of the associated first order Melnikov functions satisfy.Furthermore,the exact bound of a special case is given using the Chebyshev system.At the end,some numerical simulations are given to illustrate the existence of limit cycles.

关 键 词:whirling pendulum limit cycle Melnikov function Picard-Fuchs equation Chebyshev system 

分 类 号:O153.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象