检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wenjie CHU Ailun YU Wei ZHANG Haiyan ZHAO Zhi JIN
机构地区:[1]School of Computer Science,Peking University,Beijing 100871,China [2]Key Laboratory of High-Confidence Software Technologies(Peking University),Ministry of Education,Beijing 100871,China
出 处:《Science China(Information Sciences)》2024年第5期111-131,共21页中国科学(信息科学)(英文版)
基 金:supported by National Natural Science Foundation of China(Grant Nos.62192731,62192730,62190200).
摘 要:This paper proposes an imitation learning method to learn a universal agent policy for unlabeled multi-agent pathfinding(unlabeled MAPF)in grid environments.The method transforms the unlabeled MAPF problem into a series of temporal-independent homogeneous classification problems for each agent.Based on this transformation,a neural network is designed to imitate a distance-optimal expert algorithm.The neural network consists of two successive modules:perception field learner and field integrating classifier.The former refines and encodes the current system state into a perception field for each agent by combining a set of learnable field-generating functions.The latter takes an agent’s perception field as input and decides the agent’s next action based on a triplet cross-attention mechanism.We evaluate our method on a diverse set of unlabeled MAPF tasks.Compared with state-of-the-art counterparts,the experimental results manifest the superiority of the proposed method in both generalization ability and scalability.
关 键 词:unlabeled multi-agent pathfinding perception field triplet cross-attention multi-agent imitation learning learning-based planning
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147