检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Rahimeh Neamatian Monemi Shahin Gelareh Nelson Maculan Wei-Kun Chen
机构地区:[1]Sharkey Predictim Globe,Villeneuve d’Ascq,59650,France [2]Département R&T,IUT de Béthune,Universitéd’Artois,Béthune,F-62000,France [3]Federal University of Rio de Janeiro,COPPE-PESC,Rio de Janeiro,RJ 21941-972,Brazil [4]School of Mathematics and Statistics,Beijing Institute of Technology,Beijing,100081,China
出 处:《Science China Mathematics》2024年第6期1341-1358,共18页中国科学(数学)(英文版)
摘 要:In this paper,we address the complex problem of dock-door assignment and truck scheduling within cross-docking operations.This is a problem that requires frequent resolution throughout the operational day,as disruptions often invalidate the optimal plan.Given the problem's highly combinatorial nature,finding an optimal solution demands significant computational time and resources.However,the distribution of data across problem instances over a lengthy planning horizon remains consistently stable,with minimal concern regarding distribution shift.These factors collectively establish the problem as an ideal candidate for a learn-to-optimize solution strategy.We propose a Dantzig-Wolfe reformulation,solving it via both a conventional branch-and-price approach and a neural branch-and-price approach,the latter of which employs imitation learning.Additionally,we introduce some classes of valid inequalities to enhance and refine the pricing problem through a branch-and-cut scheme.Our computational experiments demonstrate that this methodology is not only feasible but also presents a viable alternative to the traditional branch-and-price algorithms typically utilized for such challenges.
关 键 词:CROSS-DOCKING MILP modeling Dantzig-Wolfe decomposition graph convolutional network
分 类 号:O224[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3