检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Hao-Long Zhang Yi-Hao Kang Fan Wu Zhen-Biao Yang Shi-Biao Zheng
出 处:《Science China(Physics,Mechanics & Astronomy)》2024年第6期12-19,共8页中国科学:物理学、力学、天文学(英文版)
基 金:supported by the National Natural Science Foundation of China(Grand Nos.12274080,and 11875108)。
摘 要:Quantum operations by utilizing the underlying geometric phases produced in physical systems are favoured due to their potential robustness.When a system in a non-degenerate eigenstate undergoes an adiabatically cyclic evolution dominated by its Hamiltonian,it will get a geometric phase,referred to as the Berry Phase.While a non-adiabatically cyclic evolution produces an Aharonov-Anandan geometric phase.The two types of Abelian geometric phases are extended to the non-Abelian cases,where the phase factors become matrix-valued and the transformations associated with different loops are non-commutable.Abelian and non-Abelian(holonomic)operations are prevalent in discrete variable systems,whose limited(say,two)energy levels,form the qubit.While their developments in continuous systems have also been investigated,mainly due to that,bosonic modes(in,such as,cat states)with large Hilbert spaces,provide potential advantages in fault-tolerant quantum computation.Here we propose a feasible scheme to realize non-adiabatic holonomic quantum logic operations in continuous variable systems with cat codes.We construct arbitrary single-qubit(two-qubit)gates with the combination of single-and two-photon drivings applied to a Kerr Parametric Oscillator(KPO)(the coupled KPOs).Our scheme relaxes the requirements of the previously proposed quantum geometric operation strategies in continuous variable systems,providing an effective way for quantum control.
关 键 词:cat qubit continuous variable systems non-Abelian
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74