检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苑紫烨 邱宝林 叶妤 温文媖[1] 化定丽 张玉书 YUAN Ziye;QIU Baolin;YE Yu;WEN Wenying;HUA Dingli;ZHANG Yushu(School of Information Management,Jiangxi University of Finance and Economics,Nanchang 330013,Jiangxi,China;College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,Jiangsu,China)
机构地区:[1]江西财经大学信息管理学院,江西南昌330013 [2]南京航空航天大学计算机科学与技术学院,江苏南京211106
出 处:《应用科学学报》2024年第3期469-485,共17页Journal of Applied Sciences
基 金:国家自然科学基金(No.62201233,No.61961022,No.61906079)资助。
摘 要:传统的图像隐写方法容易受到隐写分析的攻击,无载体图像隐写方法可以从本质上抵抗隐写分析的攻击。然而,现有的无载体图像隐写算法存在鲁棒性低、提取精度有限和不可感知性差等问题,为此提出一种面向编码伪装的鲁棒无载体图像隐写方法。该方案将基于深度的合成隐写方法与传统的聚类相结合,通过感知哈希对编码网络生成的合成图像与相似图像进行匹配,将传输的图像由合成图像替换成真实自然图像以此提高安全性;进一步,利用聚类算法找到与相似图像对应的伪装图像进行传输。以卷积神经网络特征为基准进行聚类,提高了抗几何攻击的能力。实验分析表明,所提方案在隐藏容量、提取精度方面都有较优的表现,且解决了生成式隐写方案存在的图像质量低和鲁棒性差等问题。Traditional image steganography methods are susceptible to attack by steganalysis tools,whereas coverless image steganography method can essentially resist the attack of steganalyzers.However,most coverless image steganography algorithms suffer from problems such as low robustness,limited extraction accuracy,and poor imperceptibility.Therefore,this paper proposes a robust coverless steganography method for coding camouflage,which combines depth-based synthetic steganography with traditional clustering algorithms.The proposed algorithm matches the synthetic images generated by the coding network with similar images through perceptual hashing,and converts the transmitted images from synthetic images to real natural images to improve security.In addition,clustering algorithm is used to find the camouflage image which is corresponding to the similar image for transmission.The clustering is based on the convolutional neural networks(CNN)feature,which improves the ability to resist geometric attacks.Experimental analysis demonstrates that the proposed scheme achieves higher capacity and extraction accuracy,and solves the problems of low image quality and poor robustness of generative steganography schemes.
关 键 词:无载体图像隐写 卷积神经网络聚类 感知哈希 生成网络 伪装图像
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.243.141