检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张静思 ZHANG Jingsi(Midea Group Central Research Institute,Shanghai 201702,China)
出 处:《电子技术(上海)》2024年第3期164-167,共4页Electronic Technology
摘 要:阐述预测空调用户的个体热偏好有助于智能空调控制技术的发展。分析空调中的嵌入传感器数据以及用户与这些设备的交互行为,采用机器学习算法对空调的设定温度变化进行预测。结果表明,不同用户的空调使用行为在设定温度偏好和调节时间上存在较大差异。超过60%的用户倾向于将空调温度设置在25~28℃范围内。机器学习模型预测升高设定温度和降低设定温度的准确率为72.1%~87.3%,通过添加月和小时作为输入特征,模型的性能随着样本的增大而提高。This paper expounds that predicting individual thermal preferences of air conditioning users can contribute to the development of intelligent air conditioning control technology.It analyzes the embedded sensor data in the air conditioner and the interaction behavior between users and these devices,and uses machine learning algorithms to predict the set temperature changes of the air conditioner.The results indicate that there are significant differences in temperature preferences and adjustment time among different users in their air conditioning usage behavior.More than 60%of users tend to set the air conditioning temperature within the range of 25-28℃.The accuracy of machine learning models in predicting the increase and decrease of set temperatures is 72.1%~87.3%.By adding months and hours as input features,the performance of the model improves with the increase of samples.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7