检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:乔龙 QIAO Long(Gansu Zhiguang Geological Engineering Survey and Design Co.,Ltd.)
机构地区:[1]甘肃智广地质工程勘察设计有限公司
出 处:《智能建筑与智慧城市》2024年第6期172-174,共3页Intelligent Building & Smart City
摘 要:论文综合探讨了信息化时代下滑坡勘查及防治预警技术的发展现状与前瞻趋势。论文首先回顾了传统的滑坡勘查方法,包括地质调查、钻孔勘查以及地球物理勘查,深入研究了现代滑坡勘查技术,如遥感技术、地理信息系统(GIS)、无人机监测技术等。在滑坡预警技术方面,文章重点分析了传感器技术、实时数据监测系统、大数据分析以及人工智能与机器学习的应用并展示在灾害预测与预警中的关键作用,最后讨论滑坡风险的防治对策,包括工程措施、植被恢复。This paper comprehensively discusses the current development status and future trends of landslide survey,and early warning technologies for prevention and control in the information age.The study begins with a review of traditional landslide survey methods,including geological surveys,drilling exploration,and geophysical exploration,and delves into modern landslide survey technologies such as remote sensing,Geographic Information Systems(GIS),unmanned aerial vehicle(UAV)monitoring technologies and so on.In terms of landslide early warning technologies,the article focuses on the analysis of sensor technology,real-time data monitoring systems,big data analysis,and the application of artificial intelligence and machine learning,demonstrating their key roles in disaster prediction and early warning.Lastly,the paper discusses strategies for the prevention and control of landslide risks,including engineering measures and vegetation restoration.
分 类 号:P642.22[天文地球—工程地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222