检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹昱东 王保建[1] 李珂嘉 王紫平 张小丽[2] YIN Yudong;WANG Baojian;LI Kejia;WANG Ziping;ZHANG Xiaoli(School of Mechanical Engineering,Xi'an Jiaotong University,Xi'an 710049,China;Key Laboratory of Road Construction Technology and Equipment of the Ministry of Education,Chang an University,Xi'an 710064,China)
机构地区:[1]西安交通大学机械工程学院,西安710049 [2]长安大学道路施工技术与装备教育部重点实验室,西安710064
出 处:《计算机测量与控制》2024年第6期27-34,共8页Computer Measurement &Control
基 金:陕西省自然科学基础研究计划项目(2021M-169);陕西省自然科学基础研究计划项目(2023-JC-YB-477);2022年西安交通大学本科实验实践与创新创业教育教学改革研究专项项目(22SJZX10)。
摘 要:机床出现的故障大多有先例,但故障案例分散,不同工厂又不数据共享且没有标准的数据库管理,以至于对于已有的相似故障,工厂仍需要按照未知故障进行停机维修;因此,急需一套标准服务平台能够集合大量故障案例,同时实现更新维护,增添新故障,以供各工厂做故障参考,尽可能降低维修成本以及时间开销;通过将计算机领域较为流行的知识图谱运用到机床故障诊断领域,全面运用机床故障诊断案例知识,构建以故障现象、故障发生原因以及解决方案为核心的机床故障诊断网络,实现快速确认故障发生部位,提供合理的故障解决方案,提高制造业的生产效率;使用爬虫技术获取故障案例数据,采用BIO标注法完成样本标注,分别使用Bilstrm-crf、Vgg16以及Bert模型完成实体抽取任务,并对上述模型准确率从多个角度进行对比,将知识导入Neo4J图数据库并建立针对机床故障的知识图谱,最终实现知识图谱可视化。Most machine tool failures have the characteristics of scattered fault cases,no data sharing in different factories,and no standard database management.Aimed at existing similar failures,it is still necessary to shut down for maintenance in factories by unknown failures.Therefore,it is urgent for a standard service platform to collect a large number of fault cases,update maintenance and add new faults at the same time,and provide a fault reference for each factory and reduce maintenance and time costs as much as possible.This paper applies the popular knowledge graphs in the computer field to the fault diagnosis networks of machine tools,comprehensively uses the case knowledge of machine tool fault diagnosis,and constructs a machine tool fault diagnosis network with fault phenomena,reasons and solutions as a core to quickly identify the fault location,provide reasonable fault solutions,and improve the production efficiency of manufacturing industry.The crawler technology is used to obtain the fault case data,the BIO tagging method is used to complete the sample tagging,the Bilstrm-crf,Vgg16 and Bert models are used to complete the entity extraction task,respectively,and the accuracy of the above models are compared from multiple aspects,the knowledge is imported into the Neo4J diagram database,it builds the knowledge graph for the machine tool fault,and finally realizes the visualization of knowledge graph.
关 键 词:机床故障 知识图谱 Bert模型 Neo4j图数据库 命名实体抽取
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49