检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qinyuan Yao Feilong Zhang Pan Dong Ziyuan Zhao Yi He Weiguo Li Liming Chen
机构地区:[1]State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,Chongqing,400044,China [2]College of Aerospace Engineering,Chongqing University,Chongqing,400044,China
出 处:《Acta Mechanica Solida Sinica》2024年第2期316-326,共11页固体力学学报(英文版)
基 金:the National Natural Science Foundation of China(12172069);the Graduate Scientific Research and Innovation Foundation of Chongqing(CYS23078)for their support in this research.
摘 要:With the increasingly widespread application of rubber in many fields,there is a growing demand for quantitative characterization of temperature-dependent mechanical properties in high-temperature service environments.The critical tearing energy is an important criterion for determining whether rubber materials will experience tearing instability,while tear strength is a key parameter for rubber materials to resist tearing.It is necessary to quantitatively characterize their evolution with temperature.Current theoretical research mainly relies on fitting a large amount of experimental data,which is not convenient for engineering applications.Therefore,in this work,a temperature-dependent critical tearing energy model is firstly developed based on the force-heat equivalence energy density principle.This model considers the equivalent relationship between the critical tearing energy required for crack instability propagation and the thermal energy stored in the rubber material.It is demonstrated that our model has higher prediction accuracy when compared to other models.Furthermore,combining with the Griffith fracture theory,temperature-dependent tear strength models applicable to three different crack modes are separately established.These models are validated using experimental data for Mode I opening cracks and ModeⅢtearing cracks,and good consistency is achieved.Additionally,a quantitative analysis of the influence of elastic modulus on tear strength at different temperatures is conducted.This work provides a reliable way for predicting temperature-dependent tearing instability behavior and offers beneficial suggestions for improving the tear strength of rubber materials at different temperatures.
关 键 词:TEMPERATURE-DEPENDENT Critical tearing energy Tear strength RUBBER Theoretical model
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.36.197