检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭飞[1,2] 赖鹏 黄发明 刘磊磊[4] 王秀娟 何政宇 Guo Fei;Lai Peng;Huang Faming;Liu Leilei;Wang Xiujuan;He Zhengyu(Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education,Yichang 443002,China;College of Civil Engineering&Architecture,China Three Gorges University,Yichang 443002,China;School of Civil Engineering and Architecture,Nanchang University,Nanchang 330031,China;School of Geosciences and Info-Physics,Central South University,Changsha 410083,China;School of Earth Sciences and Engineering,Hohai University,Nanjing 210098,China)
机构地区:[1]三峡库区地质灾害教育部重点实验室(三峡大学),湖北宜昌443002 [2]三峡大学土木与建筑学院,湖北宜昌443002 [3]南昌大学建筑工程学院,江西南昌330031 [4]中南大学地球科学与信息物理学院,湖南长沙410083 [5]河海大学地球科学与工程学院,江苏南京210098
出 处:《地球科学》2024年第5期1584-1606,共23页Earth Science
基 金:国家自然科学基金项目(Nos.42107489,41807285);三峡库区地质灾害教育部重点实验室开放基金项目(No.2022KDZ14);湖北省自然科学基金项目(No.2022CFB557);土木工程防灾减灾湖北省引智创新示范基地(No.2021EJD026)。
摘 要:滑坡易发性评价是滑坡风险评估的基础和核心内容,开展滑坡易发性文献计量分析可以定量化地分析其研究进展及发展趋势,为国内开展地灾风险评估工作提供参考.利用Web of Science和CNKI数据库,基于CiteSpace可视化知识图谱分析工具对1985-2022年已发表的滑坡易发性文献进行计量分析,并对摘要部分进行了LDA分析,来细分该领域内的研究.结果表明:(1)滑坡易发性评价仍然是当前的研究热点,中国是滑坡易发性研究较为活跃的国家且国际间合作较多;(2)滑坡易发性领域发文量前10的作者中4位来自中国,中国科学院成为发文最多的机构,接收易发性评价类文章最多的中英文期刊分别是《中国地质灾害与防治学报》和《Natural Hazard》,中国国家自然科学基金和国土资源大调查项目大力资助了滑坡易发性课题的研究;(3)近5年来,机器学习模型(包括深度学习等)在滑坡易发性的应用快速增长,已成为最热门的研究方法;(4)为了实现滑坡易发性建模的精简化和智能化,并进一步提高滑坡易发性评价结果的精度和实用性,滑坡易发性在滑坡编目、指标体系、评价单元、评价模型、联接方法和精度评价等方面还需开展深入探索.Landslide susceptibility mapping(LSM)is the foundation and critical part of landslide risk assessment.The bibliometric analysis of LSM literature can be applied to quantitatively analyze the research progress and development trend.The result will provide references for geological hazard risk assessment in China.In this study,based on the Web of Science and CNKI databases,the CiteSpace visual knowledge graph analysis tool has been used to carry out bibliometric analysis of LSM literature from 1985 to 2022.Moreover,the LDA analysis has been conducted on the abstract to subdivide the research in this field.The results show that:(1)LSM is still a research hotspot at present.In China,there are a large number of studies and international cooperation about LSM.(2)Four of the top 10 authors in the number of published papers on LSM are from China.The institution that has published the most papers on LSM is the Chinese Academy of Sciences.The Chinese Journal of Geological Hazard and Control is the most popular Chinese journal and the Natural Hazardsis the most popular English journals to publish LSM papers.The research on the subject of LSM has been substantially funded by the National Natural Science Foundation of China and the National Land and Resources Survey Project.(3)In the past five years,machine learning models(including deep learning,etc.)have been widely used as the most popular LSM models.(4)In order to achieve the simplification and intelligence of landslide susceptibility modeling and to improve the accuracy and practicability of the LSM results,the following parts of LSM,including the landslide inventory,conditioning factors,assessment unit,assessment model,connection methods and accuracy verification,need to be deeply explored in further studies.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.112.164