检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Frontiers of Mathematics in China》2024年第1期37-56,共20页中国高等学校学术文摘·数学(英文)
摘 要:This paper studies the properties of Nambu-Poisson geometry from the(n-l,k)-Dirac structure on a smooth manifold M.Firstly,we examine the automorphism group and infinitesimal on higher order Courant algebroid,to prove the integrability of infinitesimal Courant automorphism.Under the transversal smooth morphismΦ:N-→M and anchor mapping of M on(n-1,k)-Dirac structure,it's holds that the pullback(n-1,k)-Dirac structure on M turns out an(n-1,k)-Dirac structure on N.Then,given that the graph of Nambu-Poisson structure takes the form of(n-1,n-2)-Dirac structure,it follows that the single parameter variety of Nambu-Poisson structure is related to one variety closed n-symplectic form under gauge transformation.WhenΦ:N-→M is taken as the immersion mapping of(n-1)-cosymplectic submanifold,the pullback Nambu-Poisson structure on M turns out the Nambu-Poisson structure on N.Finally,we discuss the(n-1,O)-Dirac structure on M can be integrated into a problem of(n-1)-presymplectic groupoid.Under the mapping II:M-→M/H,the corresponding(n-1,O)-Dirac structure is F and E respectively.If E can be integrated into(n-1)-presymplectic groupoid(g,2),then there exists the only,such that the corresponding integral of F is(n-1)-presymplectic groupoid(g,).
关 键 词:Nambu-Poisson structure n-symplectic structure (n-1 k)-Dirac structure INTEGRABILITY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171