检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钟易澄 裴玉茹 李培鑫 Zhong Yicheng;Pei Yuru;Li Peixin(Key Laboratory of Machine Perception(MOE),Department of Machine Intelligence,Peking University,Beijing 100871)
机构地区:[1]北京大学机器感知与智能教育部重点实验室,北京100871
出 处:《计算机辅助设计与图形学学报》2024年第4期543-551,共9页Journal of Computer-Aided Design & Computer Graphics
基 金:国家自然科学基金面上项目(61876008)。
摘 要:基于深度神经网络的无监督单视角三维人脸重建已取得显著成功,其依赖光度渲染以及对称正则化从二维单视角图像进行训练,但是单视角图像由于自遮挡与光照影响缺乏可信的人脸几何与纹理约束.因此,提出了一种基于跨视角一致约束的两阶段的单视角三维人脸重建框架.首先,局部网络并行地估计多个视角的局部人脸纹理与UV位置图,利用低维统计人脸模型3DMM对自遮挡造成的缺失区域几何与纹理进行填充;在第2阶段中,补全网络对各视角的局部纹理与UV位置图进行补全并改进,重建具有细节的完整三维人脸几何与纹理.设计了关于光度渲染、人脸纹理、与UV位置图的跨视角一致约束函数,以无监督学习机制从多视角人脸图像数据优化端到端模型.实验结果表明,所提方法可有效地从单视角图像估计人脸姿态,对遮挡区域中人脸几何与纹理合理补全,重建带有几何与纹理细节的高质量三维人脸.特别地,在MICC Florence数据集上,所提方法较对比算法重建人脸的均方根误差降低了6.36%.Deep neural network-based unsupervised single-view 3D face reconstruction has achieved remarkable success.Existing work relied on the photometric rendering constraint and the symmetric regularization to learn from 2D single-view facial images.However,the single view facial images lack reliable face geometric and texture constraints due to self-occlusion and illumination variations.In this paper,we propose a two-stage single-view 3D face reconstruction framework by virtue of cross-view consistent constraints.First,the part network(PartNet)with parallel branches is used to estimate the view-dependent pixel-wise UV positional and albedo maps.The missing geometries and textures due to self-occlusion are filled by the low-dimensional statistical facial 3DMM model.Second,the complete network(CompNet)is used to refine the UV positional and albedo maps with geometry and texture details.We design a cross-view consistency constraint in terms of photometric rendering,facial texture,and UV positional maps.The proposed end-to-end model is optimized from the multi-view facial image datasets in an unsupervised manner.Experiments show that the proposed method is effective in accurately aligning faces and inferring reliable facial geometries and textures in self-occlusion regions from a single-view image.Our method is feasible to reconstruct high-fidelity 3D faces with geometry and texture details.Specifically,the proposed method reduces the root mean square error by 6.36%compared with the state-of-the-art on MICC Florence dataset.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7