Two-Stage Online Debiased Lasso Estimation and Inference for High-Dimensional Quantile Regression with Streaming Data  

在线阅读下载全文

作  者:PENG Yanjin WANG Lei 

机构地区:[1]School of Statistics and Data Science,KLMDASR,LEBPS and LPMC,Nankai University,Tianjin 300071,China

出  处:《Journal of Systems Science & Complexity》2024年第3期1251-1270,共20页系统科学与复杂性学报(英文版)

基  金:supported by the Fundamental Research Funds for the Central Universities;the National Natural Science Foundation of China under Grant No.12271272。

摘  要:In this paper,the authors propose a two-stage online debiased lasso estimation and statistical inference method for high-dimensional quantile regression(QR)models in the presence of streaming data.In the first stage,the authors modify the QR score function based on kernel smoothing and obtain the online lasso smoothed QR estimator through iterative algorithms.The estimation process only involves the current data batch and specific historical summary statistics,which perfectly accommodates to the special structure of streaming data.In the second stage,an online debiasing procedure is carried out to eliminate biases caused by the lasso penalty as well as the accumulative approximation error so that the asymptotic normality of the resulting estimator can be established.The authors conduct extensive numerical experiments to evaluate the performance of the proposed method.These experiments demonstrate the effectiveness of the proposed method and support the theoretical results.An application to the Beijing PM2.5 Dataset is also presented.

关 键 词:Adaptive tuning asymptotic normality debiased lasso online updating quantile regres-sion 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象