检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘小燕 邵长虹 李瑞 李超 陈瑞凤 徐春婕 梁博 LIU Xiaoyan;SHAO Changhong;LI Rui;LI Chao;CHEN Ruifeng;XU Chunjie;LIANG Bo(Institute of Computing Technology,China Academy of Railway Sciences Corporation Limited,Beijing 100081,China;Traffic Management Department,Beijing-Shanghai High Speed Railway Co.,Ltd.,Beijing 100038,China)
机构地区:[1]中国铁道科学研究院集团有限公司电子计算技术研究所,北京100081 [2]京沪高速铁路股份有限公司运输管理部,北京100038
出 处:《中国铁路》2024年第5期16-24,共9页China Railway
基 金:中国国家铁路集团有限公司科技研究开发计划项目(P2022X001)。
摘 要:铁路客站的舒适度直接关系着旅客的出行体验和满意度。选取聊城西站作为研究对象,采用PMV物理方程、Attention-LSTM神经网络模型以及PMV&Attention-LSTM融合模型3种方法,针对旅客舒适度开展综合评估与分析。在模型构建过程中,运用了标准化处理、数据集划分、网格搜索交叉验证等技术寻找最佳超参数,并记录了训练过程中的损失函数和均方误差。在模型预测中,充分考虑了温度、湿度、风速、空气质量、二氧化碳、光照、噪声等环境因素对旅客舒适度的影响。对比3种预测方法,结果显示,融合模型在考虑多维环境数据时可更准确地反映舒适度水平,表明该模型更适应铁路客站的复杂环境条件,可为提高候车厅舒适性提供更为可靠的参考依据。The comfort level of railway passenger stations plays a crucial role in enhancing the overall travel experience and satisfaction of passengers.Liaochengxi Railway Station is selected as the object of this study,with three models—PMV physical equation,Attention-LSTM neural network model,and PMV&Attention-LSTM fusion model—being adopted to carry out comprehensive evaluation and analysis on passenger comfort level in railway stations.In the process of modelling,techniques such as standardization processing,dataset partitioning,and grid search cross-validation are used to find the optimal hyperparameters,and the loss function and mean square error in the training process are recorded.The model prediction takes into account a variety of environmental factors,including temperature,humidity,wind speed,air quality,carbon dioxide levels,lighting conditions,and noise levels.Comparing the three prediction methods,the results show that the fusion model provides a more precise reflection of passenger comfort levels,particularly when accounting for multi-dimensional environmental data.This suggest that the fusion model is better suited for the complex environmental conditions found in railway passenger stations and can offer more reliable reference for enhancing comfort in passenger waiting areas.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15