Ship recognition based on HRRP via multi-scale sparse preserving method  

在线阅读下载全文

作  者:YANG Xueling ZHANG Gong SONG Hu 

机构地区:[1]College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China [2]Key Lab of Radar Imaging and Microwave Photonics,Ministry of Education,Nanjing 210016,China [3]Nanjing Marine Radar Institute,Nanjing 210016,China

出  处:《Journal of Systems Engineering and Electronics》2024年第3期599-608,共10页系统工程与电子技术(英文版)

基  金:supported by the National Natural Science Foundation of China (62271255,61871218);the Fundamental Research Funds for the Central University (3082019NC2019002);the Aeronautical Science Foundation (ASFC-201920007002);the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。

摘  要:In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.

关 键 词:ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction 

分 类 号:U675.7[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象