基于椭圆随机超曲面模型CPHD滤波器的多扩展目标跟踪算法  

Multiple Extended Targets Tracker Based on CPHD Filter with Elliptic Random Hypersurface Model

在线阅读下载全文

作  者:滕明 侯亚威[2] 李伟杰 TENG Ming;HOU Yawei;LI Weijie(Nanjing Research Institute of Electronics Technology,Nanjing Jiangsu 210039,China;China Satellite Maritime Survey and Control Department,Jiangyin Jiangsu 214431,China;School of Electronic and Information Engineering,Beihang University,Beijing 100191,China)

机构地区:[1]南京电子技术研究所,江苏南京210039 [2]中国卫星海上测控部,江苏江阴214431 [3]北京航空航天大学电子信息工程学院,北京100191

出  处:《现代雷达》2024年第5期26-30,共5页Modern Radar

摘  要:复杂场景下多扩展目标跟踪在自动驾驶、目标识别等领域具有很高的应用价值。文中提出了一种基于椭圆随机超曲面模型(ERHM)的势概率假设密度(CPHD)滤波器。首先,基于有限集统计理论,利用CPHD滤波器建立多扩展目标的贝叶斯滤波框架;然后,采用ERHM描述扩展目标的量测源分布,并利用无迹变换嵌入CPHD滤波流程;最后,仿真实验结果表明,ERHM-CPHD滤波器对椭圆扩展目标的跟踪性能优于传统的伽马高斯逆威沙特CPHD滤波器,在杂波密度较高、目标新生的位置比较确定的场景或者扩展目标数目较多时,对扩展目标的参数估计更为准确。所提方法在高分辨率雷达多目标跟踪方面具备很好的运用前景。Multiple extended targets tracking in complex scenes has high application value in fields such as autonomous driving and target recognition.A cardinalized probability hypothesis density(CPHD)filter built on elliptic random hypersurface model(ERHM)is presented in this paper.Firstly,based on the theory of finite set statistics,the Bayesian filtering framework of multiple extended targets is established by using CPHD filter.Then,ERHM is used to describe the measurement source distribution of the extended target,and unscented transform is used to embed the CPHD filtering process.Lastly,the simulation results show that the tracking performance of the proposed ERHM-CPHD filter is better than that of the traditional gamma Gaussian inverse Wishart CPHD(GGIW-CPHD)filter,and the parameter estimation of the extended targets is more accurate,when the clutter density is high and the position of newly generated targets is determined or the number of multiple extended targets is relatively large.The proposed method has good application prospects in using high-resolution radar for multi-target tracking.

关 键 词:多扩展目标跟踪 椭圆随机超曲面 势概率假设密度滤波器 无迹变换 

分 类 号:TN957.52[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象