Distributed Energy and Reserve Scheduling in Local Energy Communities Using L-BFGS Optimization  

在线阅读下载全文

作  者:Mohammad Dolatabadi Alireza Zakariazadeh Alberto Borghetti Pierluigi Siano 

机构地区:[1]Department of Management&Innovation Systems,University of Salerno,Salerno,Italy [2]Department of Electrical,Electronic,and Information Engineering,University of Bologna,Bologna,Italy [3]University of Science and Technology of Mazandaran,Behshahr,Iran [4]Department of Power Systems,National University of Science and Technology POLITEHNICA Bucharest,Bucharest,Romania [5]IEEE

出  处:《CSEE Journal of Power and Energy Systems》2024年第3期942-952,共11页中国电机工程学会电力与能源系统学报(英文)

基  金:supported in part by the Ministry of Research,Innovation and Digitalization under Project PNRR-C9-I8-760090/23.05.2023 CF30/14.11.2022.

摘  要:Encouraging citizens to invest in small-scale renewable resources is crucial for transitioning towards a sustainable and clean energy system.Local energy communities(LECs)are expected to play a vital role in this context.However,energy scheduling in LECs presents various challenges,including the preservation of customer privacy,adherence to distribution network constraints,and the management of computational burdens.This paper introduces a novel approach for energy scheduling in renewable-based LECs using a decentralized optimization method.The proposed approach uses the Limitedmemory Broyden–Fletcher–Goldfarb–Shanno(L-BFGS)method,significantly reducing the computational effort required for solving the mixed integer programming(MIP)problem.It incorporates network constraints,evaluates energy losses,and enables community participants to provide ancillary services like a regulation reserve to the grid utility.To assess its robustness and efficiency,the proposed approach is tested on an 84-bus radial distribution network.Results indicate that the proposed distributed approach not only matches the accuracy of the corresponding centralized model but also exhibits scalability and preserves participant privacy.

关 键 词:Distributed optimization flexibility services L-BFGS method local energy community RENEWABLES RESERVE 

分 类 号:TM73[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象