空气-土壤蓄热式热泵系统的实测与模拟研究  

Measurement and simulation of air-soil regenerative heat pump system

在线阅读下载全文

作  者:李永 崔军艳 李冬 李郡 赵海朝 于良 Li Yong;Cui Junyan;Li Dong;Li Jun;Zhao Haichao;Yu Liang(Hebei Academy of Building Science Co.,Ltd.;China Electronics Engineering Design Institute Co.,Ltd.;No.3 Hydrological and Engineering Geology Team,Hebei Bureau of Geology and Mineral Resources Exploration(Hebei Institute of Geothermal Resources Development);Hebei BNDNY Energy Science&.Technology Co.,Ltd.;Enpower Solar Energy(Beiing)Technology Services Co.,Ltd.)

机构地区:[1]河北省建筑科学研究院有限公司 [2]中国电子工程设计院股份有限公司 [3]河北省地质矿产勘查开发局第三水文工程地质大队(河北省地热资源开发研究所) [4]河北博纳德能源科技有限公司 [5]英豪阳光(北京)节能科技服务有限公司

出  处:《制冷与空调》2024年第5期52-59,共8页Refrigeration and Air-Conditioning

基  金:河北省人才培养工程资助项目(A201901014)。

摘  要:为解决寒冷地区单供暖土壤源热泵系统运行引起的土壤热失衡问题,在邯郸某小区土壤源热泵系统的基础上,增设空气换热机组,构成空气-土壤蓄热式热泵系统。利用实测数据对蓄热季典型工况下地埋管进出口水温、蓄热量进行分析,结果显示室外气温较高时,地埋管进口水温和蓄热量较高,有利于地埋管蓄热。利用Trnsys软件建立系统仿真模型,分析不同因素对土壤温升的影响,模拟结果表明:适当增大空气换热器换热面积、空气流量均可提高土壤温升值,但温升趋势逐渐趋于平缓。当空气换热器传热系数为40.0 W/(m^(2)·K),土壤目标温升为3.0℃时,依据土壤温升的拟合曲线得到2个方案:方案1,空气流量150×10^(3)m^(3)/h,空气换热器面积9 494.4 m^(2);方案2,空气换热器面积13 494.4 m^(2),空气流量105×10^(3)m^(3)/h。方案1和方案2每延米地埋管分别需要对应匹配0.086 m^(2)和0.123 m^(2)的空气换热器面积。空气-土壤蓄热式热泵系统连续运行10 a后,方案1和方案2的土壤温度分别下降0.23℃和0.21℃,2个方案单位供暖面积费用分别为13.85元和12.67元,方案2优于方案1。In order to solve the problem of soil heat imbalance caused by the operation of the single-heating soil source heat pump system in cold areas,an air heat exchange unit is added on the basis of the soil source heat pump system in a community in Handan to form an air-soil regenerative heat pump system.In the heat storage season,the measured data is used to analyze the water temperature at the inlet and outlet of the buried pipe and heat storage under typical working conditions.The results show that when the outdoor temperature is high,the inlet water temperature and heat storage of the buried pipe are relatively high,which is conducive to the heat storage of the buried pipe.The Trnsys soft-ware is used to establish a system simulation model to analyze the influence of various fac-tors on the soil temperature rise.The simulation results show that appropriately increasing the heat exchange area of the air heat exchanger and the air flow rate can in-crease the soil temperature rise value,but the temperature rise trend gradually flattens out.When the heat transfer coefficient of the air heat exchanger is 40.0 W/(m^(2)·K)and.the target soil temperature rise is 3.0 ℃,two solutions are obtained according to the fit-ting curve of the soil temperature rise:the solution one is with air flow rate of 150×10^(3)m^(3)/h and the air heat exchange area of 9494.4 m^(2);the solution two is with air heat exchange area of 13494.4 m^(2) and air flow rateof 105×10^(3)m^(3)/h.Each linear meter of the buried pipes in solution one and two should be matched with 0.086 m^(2) and 0.123 m^(2) of air heat exchanger area.After 10 years of continuous operation of the air-soil regenerative heat pump system,the soil temperature of solution one and two drops by 0.23 ℃ and 0.21 ℃,respectively.The unit heating area costs of the two solutions are 13.85 yuan and.12.67 yuan,respectively.The solution two is better than the solution one.

关 键 词:土壤源热泵 空气换热器 蓄热 土壤温升 

分 类 号:TB6[一般工业技术—制冷工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象