检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋潇 刘腾 边纪 陆鹏飞 刘泱 朱峰 罗乐 Xiao Song;Teng Liu;Ji Bian;Pengfei Lu;Yang Liu;Feng Zhu;a Le Luo(School of Physics and Astronomy,Sun Yat-sen University,Zhuhai 519082,China;Shenzhen Research Institute of Sun Yat-Sen University,Shenzhen 518057,China;Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area,Shenzhen 518048,China;Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing,Zhuhai 519082,China)
机构地区:[1]School of Physics and Astronomy,Sun Yat-sen University,Zhuhai 519082,China [2]Shenzhen Research Institute of Sun Yat-Sen University,Shenzhen 518057,China [3]Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area,Shenzhen 518048,China [4]Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing,Zhuhai 519082,China
出 处:《Chinese Physics Letters》2024年第6期1-10,共10页中国物理快报(英文版)
基 金:supported by the National Key Research and Development Program of China(Grant No.2022YFC2204402);the Key-Area Research and Development Program of Guangdong Province(Grant No.2019B030330001);the Guangdong Science and Technology Project(Grant No.20220505020011);the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Grant No.2021qntd28);the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(Grant No.2023lgbj020);SYSU Key Project of Advanced Research;Shenzhen Science and Technology Program(Grant No.JCYJ20220818102003006);the Shenzhen Science and Technology Program(Grant No.2021Szvup172);the supports from China Postdoctoral Science Foundation(Grant No.2021M703768);the supports from Guangdong Province Youth Talent Program(Grant No.2017GC010656)。
摘 要:The Clauser-Horne-Shimony-Holt(CHSH)game provides a captivating illustration of the advantages of quantum strategies over classical ones.In a recent study,a variant of the CHSH game leveraging a single qubit system,referred to as the CHSH^(*)game,has been identified.We demonstrate that this mapping relationship between these two games remains effective even for a non-unitary gate.Here we delve into the breach of Tsirelson’s bound in a non-Hermitian system,predicting changes in the upper and lower bounds of the player’s winning probability when employing quantum strategies in a single dissipative qubit system.We experimentally explore the impact of the CHSH^(*)game on the player’s winning probability in a single trapped-ion dissipative system,demonstrating a violation of Tsirelson’s bound under the influence of parity-time(PT)symmetry.These results contribute to a deeper understanding of the influence of non-Hermitian systems on quantum games and the behavior of quantum systems under PT symmetry,which is crucial for designing more robust and efficient quantum protocols.
关 键 词:QUANTUM system DISSIPATIVE
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249