检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李俊卿[1] 刘若尧 何玉灵[2] LI Junqing;LIU Ruoyao;HE Yuling(Department of Electrical Engineering,North China Electric Power University,Baoding Hebei 071003,China;Department of Mechanical Engineering,North China Electric Power University,Baoding Hebei 071003,China)
机构地区:[1]华北电力大学电力工程系,河北保定071003 [2]华北电力大学机械工程系,河北保定071003
出 处:《机床与液压》2024年第12期193-201,共9页Machine Tool & Hydraulics
基 金:国家自然科学基金面上项目(52177042)。
摘 要:目前的齿轮箱故障诊断方法,在多转速工况及噪声干扰下,存在过拟合及诊断效果不佳的问题。针对此问题,提出一种北方苍鹰(NGO)算法优化变分模态分解(VMD)结合改进GoogLeNet的齿轮箱故障诊断方法。使用NGO对VMD进行参数寻优,利用优化后的VMD去除故障信号中的噪声;对原始GoogLeNet的结构进行合理删减,并利用延迟丢弃法、可训练的ReLU函数(TReLU)对其改进;最后,将去噪后的故障信号转换为二维图作为改进GoogLeNet的输入数据进行网络的训练及分类,得到故障诊断结果。实验结果表明:与其他降噪方法相比,NGO-VMD方法的降噪效果明显,能显著提高故障诊断的准确率;与常见的卷积神经网络相比,提出的改进GoogLeNet能进一步提高故障诊断的准确率,达到了97.2%。The current fault diagnosis methods of gear box have the problems of overfitting and poor diagnosis effect under multi-speed conditions and noise interference.To solve this problem,a northern goshawk optimization(NGO) algorithm optimized variational mode decomposition(VMD) combined an improved GoogLeNet gearbox fault diagnosis method was proposed.NGO was used to optimize VMD parameters,and the optimized VMD was used to remove noise from fault signals.The structure of the original GoogLeNet was deleted reasonably and improved with delayed dropout and trainable ReLU(TReLU).Finally,the denoised fault signals were converted into 2D graphs as input data of improved GoogLeNet for network training and classification,and fault diagnosis results were obtained.The experimental results show that compared with other noise reduction methods,NGO-VMD method has obvious noise reduction effect and can significantly improve the accuracy of fault diagnosis.Compared with the common convolutional neural network,the improved GoogLeNet can further improve the accuracy of fault diagnosis,reaching 97.2%.
关 键 词:变分模态分解(VMD) 北方苍鹰优化(NGO)算法 改进GoogLeNet 齿轮箱故障诊断
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15