检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周琼[1] 肖凯兰 张萍 王小莉 王琳玲[3] ZHOU Qiong;XIAO Kailan;ZHANG Ping;WANG Xiaoli;WANG Linling(Department of Ultrasound,Hunan Provincial People’s Hospital,the First Affiliated Hospital of Hunan Normal University,Changsha 414000,China)
机构地区:[1]湖南省人民医院湖南师范大学附属第一医院超声科,长沙市414000 [2]中南大学湘雅医学院附属株洲医院超声科,长沙市414000 [3]湖南中医药大学第一附属医院超声影像科,长沙市414000 [4]湖南中医药大学第一附属医院病理科,长沙市414000
出 处:《临床超声医学杂志》2024年第6期500-504,共5页Journal of Clinical Ultrasound in Medicine
摘 要:目的探讨超声造影(CEUS)定量参数预测胰腺神经内分泌肿瘤(pNETs)病理分级的临床应用价值。方法选取我院经手术病理确诊的pNETs患者54例,依据WHO 2019病理分级标准分为G1/G2级组40例和G3级组14例,术前均行常规超声和CEUS检查,比较两组常规超声图像特征(肿瘤最大径、结构、位置、回声、边缘及有无主胰管扩张、内部血流情况)、CEUS图像特征(胰腺病变增强模式、动脉期增强程度、有无非增强坏死区域)及CEUS定量参数[相对峰值强度(rPI)、相对平均传输时间(rmTT)、相对上升时间(rRT)、相对达峰时间(rTTP)、相对曲线下面积(rAUC)]的差异。绘制受试者工作特征(ROC)曲线分析CEUS定量参数预测pNETs病理分级的诊断效能。结果两组常规超声图像特征、CEUS图像特征比较差异均无统计学意义。G1/G2级组rPI、rmTT、rAUC均高于G3级组,差异均有统计学意义(均P<0.05)。ROC曲线分析显示,rPI、rmTT和rAUC预测pNETs病理分级的曲线下面积分别为0.799、0.687、0.932,联合应用预测pNETs病理分级的AUC为0.980。结论CEUS定量参数可准确预测pNETs病理分级,其中rPI、rmTT和rAUC联合应用对预测pNETs病理分级具有较高的临床应用价值。Objective To explore the clinical application value of contrast-enhanced ultrasound(CEUS)quantitative parameters in predicting the pathological grading of pancreatic neuroendocrine tumors(pNETs).Methods A total of 54 patients with pNETs confirmed by surgical pathology admitted to our hospital were selected and divided into G1/G2 group(40 cases)and G3 group(14 cases)according to the WHO 2019 pathological grading criteria.Both groups underwent preoperative ultrasound and CEUS examination.The conventional ultrasound imaging features(tumor maximum diameter,tructure,location,echo,edge and presence or absence of main pancreatic duct dilation,internal blood flow),CEUS imaging features(pancreatic lesion enhancement pattern,arterial phase enhancement degree,presence or absence of non-enhanced necrotic area),and CEUS quantitative parameters[relative peak intensity(rPI),relative mean transit time(rmTT),relative rise time(rRT),relative time to peak(rTTP),relative area under the curve(rAUC)]were compared between the two groups.Receiver operating characteristic(ROC)curve was drawn to analyze the diagnostic efficacy of CEUS quantitative parameters in predicting the pathological grading of pNETs using.Results There were no statistically significant differences in conventional ultrasound and CEUS imaging features between the two groups.The rPI,rmTT,rAUC in G1/G2 group were higher than those in G3 group,the differences were statistically significant(all P<0.05).ROC curve analysis showed that the area under the curve of rPI,TT and rAUC for predicting the pathological grading of pNETs were 0.799,0.687,and 0.932,respectively.The area under the curve of combined application was 0.980.Conclusion CEUS quantitative analysis can accurately predict the pathological grading of pNETs,and the combined application of rPI,rmTT,rAUC have good clinical value in predicting the pathological grading of pNETs.
分 类 号:R445.1[医药卫生—影像医学与核医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.207.192