检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高峰 郑丽丽[1,2,3,4] 顾进广 Gao Feng;Zheng Lili;Gu Jinguang(College of Computer Science and Technology,Wuhan University of Science and Technology,Wuhan 430065,Hubei,China;Big Data Science and Engineering Research Institute,Wuhan University of Science and Technology,Wuhan 430065,Hubei,China;Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial,Wuhan 430065,Hubei,China;Key Laboratory of Content Organization and Knowledge Service for Rich Media Digital Publishing,Wuhan 430065,Hubei,China)
机构地区:[1]武汉科技大学计算机科学与技术学院,湖北武汉430065 [2]武汉科技大学大数据科学与工程研究院,湖北武汉430065 [3]湖北省智能信息处理与实时工业系统重点实验室,湖北武汉430065 [4]富媒体数字出版内容组织与知识服务重点实验室,湖北武汉430065
出 处:《计算机应用与软件》2024年第6期250-256,共7页Computer Applications and Software
基 金:国家自然科学基金项目(U1836118);富媒体数字出版内容组织与知识服务重点实验室开放基金项目(ZD2020/09-01);教育部新一代信息技术创新项目(2018A03025)。
摘 要:近年来,作为正常与阿尔茨海默病过渡阶段的轻度认知障碍(Mild Cognitive Impairment,MCI)病症的研究备受关注。但目前的医学MCI人工诊断不仅参考的特征局限性较大,且依靠人工判定,易产生主观上的误差。因此,提出一种基于随机森林的MCI自动诊断方法,通过机器学习的方式,高效准确地判定MCI;同时应用遗传算法更高效地搜索求解模型的最优参数。结果表明,该方法与医学人工诊断方式相比准确率提高约5%,且在求取随机森林的最优参数问题上,与网格搜索相比,遗传算法所用时间约为其1/45。In recent years,research on the condition of mind cognitive impairment(MCI),which is the normal and excessive stage of Alzheimer's disease,has attracted much attention.However,the current medical MCI manual diagnosis not only has relatively large limitations in the referenced features,but also relies on manual judgment,which is prone to subjective errors.Therefore,this paper proposes an automatic diagnosis method of MCI based on random forest,hoping to determine MCI efficiently and accurately through machine learning.At the same time,in order to obtain the optimal parameters of the random forest MCI diagnosis model more efficiently,genetic algorithm was combined.The results show that the accuracy of this method is about 5% higher than that of medical manual diagnosis,and the time taken by genetic algorithm is shortened by nearly 45 times compared with grid search on the problem of obtaining the optimal parameters of random forest.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3