基于多源域偏移数据特征融合的数字化校园网络IoT入侵检测方法  

An IoT Intrusion Detection Method for Digital Campus Network Based on Feature Fusion of Offset Data in Multi-source Domain

在线阅读下载全文

作  者:张小奇 ZHANG Xiao-qi(School of Information and Finance,Xuancheng Vocational&Technical College,Xuancheng 242099,China)

机构地区:[1]宣城职业技术学院信息与财经学院,安徽宣城242099

出  处:《辽东学院学报(自然科学版)》2024年第1期40-46,共7页Journal of Eastern Liaoning University:Natural Science Edition

基  金:宣城职业技术学院科研振兴计划项目(ZXTS202208);安徽省质量工程项目(2022cyxy039)。

摘  要:目前常规的数字化校园网络入侵检测方法主要通过构建自编码器对数据进行批量处理,通过对恶意攻击的数据特征进行学习,从而构建出检测标准,常常易忽略不同数据源的偏移问题,导致检测精度不佳。为此,提出基于多源域偏移数据特征融合的数字化校园网络IoT入侵检测方法。首先,针对数字化校园网络数据进行特征维度判断,从而明确可提取的数据类型;然后,通过构建偏移系数矫正指标,对多源域偏移数据进行融合处理,采用优化迭代的方式,对不同层次的特征参数进行优化;最后,提取特征偏移标准,并将融合后的特征向量与偏移标准进行对比,实现对入侵数据的有效判断。实验结果表明,所提方法检测精度较高,检测效果较好。Currently conventional intrusion detection methods for digital campus networks mainly batch process the data by constructing a autoencoder and construct a detection criterion by learning the data features of malicious attacks,which leads to poor detection accuracy due to neglecting the offsets of different data sources.In this regard,An IoT intrusion detection method for digital campus network based on feature fusion of offset data in multi-source domain was proposed.Firstly,the feature dimension was judged,so as to clarify the type of data that can be extracted.Then by constructing the offset coefficient correction index,the offset data from multi-source domain was fused and processed,and the optimization iteration was used to optimize the feature parameters at different levels.Finally,the feature offset criteria are extracted,and the fused feature vectors were compared with the offset criteria to realize the effective judgment of the intrusion data.The experimental results show that,the proposed method has higher detection accuracy and better detection effect detection effect.

关 键 词:多源域 数字化校园 网络数据 入侵检测 

分 类 号:TP399[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象