检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张世红 张弛[1] 王柏森[1] ZHANG Shihong;ZHANG Chi;WANG Bosen(National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics,Research Institute of Aero-Engine,Beihang University,Beijing 100191,China)
机构地区:[1]北京航空航天大学航空发动机研究院,航空发动机气动热力国家级重点实验室,北京100191
出 处:《工程热物理学报》2024年第6期1872-1881,共10页Journal of Engineering Thermophysics
基 金:国家科技重大专项(No.J2019-Ⅲ-0014-0057);中央高校基本科研业务费专项资金(No.YWF-23-Q-1068)。
摘 要:现阶段基于神经网络构建化学反应动力学的代理模型被认为是加速燃烧数值计算的重要方法。纯数据驱动神经网络长期存在过于依赖数据采样、鲁棒性和泛化性难以保证等问题。为此,本文在训练化学反应动力学代理模型时引入了质量作用定律、质量守恒、能量守恒、元素守恒等物理信息的约束。在零维自燃和二维本生灯火焰的数值计算中,物理信息神经网络在保证2.0~4.7倍加速比的同时,抑制了神经网络代理模型的预测偏差,并且根据输运方程源项误差的理论估计给出了降低代理模型误差、提高模型鲁棒性的相关建议。Recently,surrogate models for solving chemical reaction kinetics based on neural net-works have been considered to be critical for accelerating simulations of combustion reaction flows.Data-driven neural networks have long been plagued by issues such as an over-reliance on data sam-pling and dificulty in ensuring robustness and generalization.To address these issues,the training of neural networks is constrained by physical principles in the present study,including the law of mass action,and the conservation of mass,energy,and elements.Compared with data-driven neural network surrogate models,the physics-informed neural network accelerates computations by 2.0~4.7 times while suppressing prediction errors in the numerical simulations of o-D autoignitions and a 2-D Bunsen flame.Finally,based on theoretical estimates of the source term error in combustion reaction flow simulations,this study introduces several suggestions to reduce prediction errors and improve model robustness.
分 类 号:TK16[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.5.91