水电机组调速器油压装置故障预警系统人工智能设计  被引量:1

Artificial Intelligence Design of Fault Warning System for Hydraulic Device of Hydroelectric Governor

在线阅读下载全文

作  者:严登宏 张敏 刘伟 韩清禹 曾荣俊 YAN Denghong;ZHANG Min;LIU Wei;HAN Qingyu;ZENG Rongjun(Huaneng Tibet Yarlung Zangbo River Hydropower Development Investment Co.,Ltd.,Lhasa 850000,China;State Grid Linzhi Power Supply Company,Linzhi 860000,China)

机构地区:[1]华能西藏雅鲁藏布江水电开发投资有限公司,西藏拉萨850000 [2]国网林芝供电公司,西藏林芝860000

出  处:《云南水力发电》2024年第6期68-70,82,共4页Yunnan Water Power

基  金:西藏自治区科技计划项目(XZ2022JR009G)。

摘  要:水电厂“无人值班、远程集控”模式下,集控值班员运行监盘面临着人工观察数据量大、主要依赖人的经验、设备缺陷早期识别难度大等问题。为提高值班员的运行监盘效率,满足水电厂“无人值班、远程集控”管理提升的需要,课题以水电站调速器油压装置为研究对象,应用人工智能、工业互联网等新一代信息技术,建设一个应用于水电机组调速器油压装置的设备故障预警系统,包括数据采集、数据分析及智能故障预警等模块。该系统能够对调速器油压装置的状态参数信息进行在线检测、处理和分析,达到设备状态监测及故障预警的目的,为水电站设备精益管理提供新模式、新理念。In the"unmanned and remote centralized control"mode of hydropower plants,the operation monitoring panel of the centralized control duty officer faces problems such as a large amount of manual observation data,relying mainly on human experience,and difficulty in early identification of equipment defects.In order to improve the operation monitoring efficiency of the watchman and meet the need of"unattended,remote centralized control"management improvement of the hydropower plant,this paper takes the governor oil pressure device of the hydropower plant as the research object,and applies new generation information technologies such as artificial intelligence and industrial Internet to build an equipment fault early warning system applied to the governor oil pressure device of the hydropower unit,including data acquisition,data analysis and intelligent fault early warning modules.This system can perform online detection,processing,and analysis of the status parameter information of the governor oil pressure device,achieving the purpose of equipment status monitoring and fault warning,and providing a new mode and concept for lean management of hydropower station equipment.

关 键 词:水电站 调速器油压装置 人工智能 工业互联网 故障预警 

分 类 号:TV738[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象