高超飞行器电子发汗冷却热响应模型及数值模拟研究  

Thermal Response Model and Computational Analysis of Electron Transpiration Cooling for Hypersonic Vehicles

在线阅读下载全文

作  者:王晓晶 李亮[2] 罗晓亮 龙东辉[2] 梁秀兵 WANG Xiaojing;LI Liang;LUO Xiaoliang;LONG Donghui;LIANG Xiubing(National Innovation Institute of Defense Technology,Academy of Military Sciences,Beijing 100071,China;East China University of Science and Technology,Shanghai 200237,China)

机构地区:[1]军事科学院国防科技创新研究院,北京100071 [2]华东理工大学,上海200237

出  处:《智能安全》2024年第2期1-9,共9页Artificial Intelligence Security

摘  要:高超声速飞行器前缘等尖锐部件在飞行过程中承受剧烈气动加热,表面温度可高达2000~3000 K以上,其热防护系统已成为制约飞行器突破飞行速度和航时极限的关键技术瓶颈。本文研究了一种基于电子发汗冷却的新型主动热防护技术路线,在电子热发射及冷却功率理论模型基础上构建了前缘热平衡方程,并基于Navier-Stokes方程耦合双温模型和11组分反应模型,运用计算流体动力学方法研究了前缘部件在不同条件下的热响应。结果表明,来流速度、前缘材料功函数、前缘曲率半径对电子发汗冷却效果均有显著影响。来流速度越高、前缘功函数越低、前缘曲率半径越小,电子发汗冷却所产生的温降幅度越大;在理想条件下,电子发汗冷却可产生超过40%幅度的降温效果,揭示了其应用于新一代主动热防护系统的潜力。Sharp components of hypersonic vehicles such as leading edges can endure intense aerodynamic heating during flight,resulting in ultra-high surface temperatures over 2000 K~3000 K.The thermal protection systems(TPS)for these components have become critical bottleneck technologies,limiting the breakthrough in flight speed and duration.In this research,an innovative active thermal protection system featuring electron transpiration cooling(ETC)was investigated.A thermal balance equation was developed,based on the theoretical models of electron thermionic emission and the cooling mechanism during emission.The thermal response of the leading edge affected by ETC under different conditions was discussed using computational fluid dynamics methods,based on Navier-Stokes equations coupled with the two-temperature model and the 11-species reaction model.Results indicate that the freestream velocity,material work function,and the leading-edge radius can significantly impact the effectiveness of electron transpiration cooling.Higher freestream velocities,lower material work functions,and smaller leading-edge radii result in greater cooling efficiency.Under ideal conditions,a remarkable decrease in surface temperature of over 40%can be achieved using electron transpiration cooling,revealing its potential for application in next-generation active thermal protection systems.

关 键 词:高超声速飞行器 电子发汗 热防护系统 电子热发射 计算流体动力学 

分 类 号:V219[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象