检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪洋[1,2] WANG Yang(Technology and Innovation Support Center,University of Science and Technology of China,Hefei,Anhui 230026,China)
机构地区:[1]中国科学技术大学技术与创新支持中心,安徽合肥230026 [2]中国科学院合肥物质科学研究院,安徽合肥230031
出 处:《大学物理》2024年第5期22-24,38,共4页College Physics
摘 要:本文通过2种直观的方式推导出物质波动量-波长关系式.第1种方式利用洛伦兹变换得出运动粒子“首尾”两端固有时间差,进而通过其对应的相位差以及粒子在空间占据的长度得出相应的物质波波长;第2种方式通过计算与粒子相位变化相适配的行波,得出物质波动量-波长关系式.这两种推导方式较为直观,有助于初学者理解物质波的物理图像.The equation for the momentum and the wavelength for the matter wave is derived in two intuitive ways.The first way is to use the Lorentz transformation to obtain the inherent time difference between the head and tail of the moving particles,and then obtain the corresponding wavelength for the material wave through its phase difference and the length of the particle occupied in space.The second way is to obtain the equation by calculating the traveling wave adapted to the phase change of the particle.These two derivation methods are intuitive and helpful to beginners to understand the physical image of the matter wave.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.161