检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴盾 李波[2] 魏超 吴坚 陆建伟 WU Dun;LI Bo;WEI Chao;WU Jian;LU Jianwei(Shaanxi Province Key Laboratory of Coal Mine Water Disaster Prevention and Control Technology,Xi’an 710077,China;College of Civil Engineering,Anhui Jianzhu University,Hefei 230601,China;School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China;Anhui Province Coalfield Geology Bureau Exploration Research Institute,Hefei 230600,China)
机构地区:[1]陕西省煤矿水害防治技术重点实验室,陕西西安710077 [2]安徽建筑大学土木工程学院,安徽合肥230601 [3]中国科学技术大学地球和空间科学学院,安徽合肥230026 [4]安徽省煤田地质局勘查研究院,安徽合肥230600
出 处:《煤矿安全》2024年第5期204-212,共9页Safety in Coal Mines
基 金:陕西省煤矿水害防治技术重点实验室开放基金资助项目(2021SKMS06);安徽省深地钻探工程研究中心开放基金资助项目(2022AHSD03)。
摘 要:矿井突水是采矿生产过程中威胁最大的地质灾害之一,快速有效地判别突水水源是预防矿井水害的关键所在。通过分析潘二煤矿含水层的水化学性质,开展了相邻水岩水锶同位素的测试与分析,选取^(87)Sr/^(86)Sr、Ca^(2+)、Na^(+)+K^(+)、Mg^(2+)、HCO_(3)^(-)、SO_(4)^(2-)、Cl^(-)7个判别指标,结合主成分分析与Fisher理论、主成分分析与距离判别理论、主成分分析与BP神经网络,分别建立基于锶同位素的混合水源判别模型(Sr-F模型、Sr-D模型、Sr-B模型),利用模型对未知水样进行判识。结果表明:基于锶同位素的Sr-B判识模型的判识效果最好,其准确率达到95%;基于主成分分析与BP神经网络突水水源判别模型能够有效地提高突水水源识别精度,能准确地判识相邻灰岩含水层突水水源,为矿井安全生产提供保障。Mine sudden water is one of the most threatening geological hazards during mining production,so rapid and effective identification of sudden water sources is the key to prevent mine water damage.In this study,we analyzed the water chemistry of Panji Coal Mine aquifer and carried out the testing and analysis of strontium isotopes of water in the adjacent water rock,selected seven discriminatory indexes:^(87)Sr/^(86)Sr,Ca^(2+),Na^(+)+K^(+),Mg^(2+),HCO_(3)^(−),SO_(4)^(2−),Cl^(−),combined with principal component analysis and Fisher’s theory,principal component analysis and distance discriminatory theory,principal component analysis and BP Neural network,to establish the discriminatory models of mixed water sources based on strontium isotopes(Sr-F model,Sr-D model,Sr-B model),and use the models to discriminate unknown water samples.The results show that the Sr-B model based on strontium isotopes has the best discriminative effect,and its accuracy reaches 95%.Therefore,the identification model of water inrush sources based on principal component analysis and BP neural network can effectively improve the identification accuracy of water inrush sources,accurately identify water inrush sources in adjacent limestone aquifers,and provide guarantee for mine safety production.
关 键 词:锶同位素 相邻含水层 水源判别 多模型 矿井突水
分 类 号:TD745[矿业工程—矿井通风与安全]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.43.181