A new interacting capillary bundle model on the multiphase flow in micropores of tight rocks  

在线阅读下载全文

作  者:Wen-Quan Deng Tian-Bo Liang Wen-Zhong Wang Hao Liu Jun-Lin Wu Fu-Jian Zhou 

机构地区:[1]National Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum(Beijing),Beijing,102249,China

出  处:《Petroleum Science》2024年第2期1099-1112,共14页石油科学(英文版)

基  金:financially supported by the General Program Grant from the National Natural Science Foundation of China(52274051 and 52174045);the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01);the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(51521063)。

摘  要:Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettability alteration by surfactants. Although the interacting capillary bundle(ICB) model shows potential in characterizing imbibition rates in different pores during wettability alteration, the existing ICB models neglect the influence of wettability and viscosity ratio on the imbibition behavior, making it difficult to accurately describe the oil-water imbibition behavior within the porous media. In this work,a new ICB mathematical model is established by introducing pressure balance without assuming the position of the leading front to comprehensively describe the imbibition behavior in a porous medium under different conditions, including gas-liquid spontaneous imbibition and oil-water imbibition.When the pore size distribution of a tight rock is known, this new model can predict the changes of water saturation during the displacement process in the tight rock, and also determine the imbibition rate in pores of different sizes. The water saturation profiles obtained from the new model are validated against the waterflooding simulation results from the CMG, while the imbibition rates calculated by the model are validated against the experimental observations of gas-liquid spontaneous imbibition. The good match above indicates the newly proposed model can show the water saturation profile at a macroscopic scale while capture the underlying physics of the multiphase flow in a porous medium at a microscopic scale. Simulation results obtained from this model indicate that both wettability and viscosity ratio can affect the sequence of fluid imbibition into pores of different sizes during the multiphase flow, where less-viscous wetting fluid is preferentially imbibed into larger pores while more-viscous wetting fluid tends to be imbibed into smaller pores. Furthermore, this model provides an avenue to calcu

关 键 词:Imbibition Multiphase flow Tight rock Interacting capillary bundle model Wettability 

分 类 号:TE311[石油与天然气工程—油气田开发工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象