机构地区:[1]Department of Physics,BMS Institute of Technology and Management,Bangalore,560064,India [2]Department of Chemistry,BMS Institute of Technology and Management,Bangalore,560064,India [3]Department of Chemistry,School of Applied Sciences,REVA University,Bangalore,560064,India [4]Energy Materials ResearchLaboratory,Department of Chemistry,Siddaganga Institute of Technology,Tumakuru,57203,Karnataka,India [5]School of Physical Sciences,REVA University,Bangalore,560057,Indi [6]Department of Physics,Govt.Science College,Bengaluru,560001,India [7]Department of Physics,Maharani Science College for Women,Maharani Cluster University,Bengaluru,560001,India
出 处:《Journal of Rare Earths》2024年第6期1046-1055,I0002,共11页稀土学报(英文版)
摘 要:A series of orange-red light emitting Ca_(2)MgSi_(2)O_(7):Sm^(3+)nanopowders were fabricated via low-cost ecofriendly green combustion technique using Aloe vera gel as fuel.The phase purity of the samples were confirmed by the powder X-ray diffraction(PXRD)technique.Pure single-phase tetragonal structure is observed from the PXRD results with no additional impurity peaks.The band gap energy of the fabricated powders was estimated by diffuse reflectance spectra(DRS)and is found to be in the range of 4.01-5.98 eV.A high resolution scanning electron microscope(SEM)was used to study the morphological behaviour of the samples.Honeycomb-like structures are observed from the SEM results.The particle size was evaluated by transmission electron microscopy(TEM)and is found to be~50 nm.The interplanar distance is found to be 0.53 nm.Photoluminescence properties were systematically studied in detail.The phosphors are successfully excited at 403 nm NUV light,producing reddish-orange characteristic emission.The emission peaks are centered at 558(^(4)G_(5/2)→^(6)H_(5/2)),607(^(4)G_(5/2)→^(6)H_(7/2))and 645 nm(^(4)G_(5/2)→^(6)H_(9/2)),respectively.Among the observed peaks the red emanation(^(4)G_(5/2)→^(6)H_(7/2))is stronger than the orange emission(^(4)G_(5/2)→^(6)H_(5/2))in the current investigation.The photoluminescent concentration quenching is noticed above 5 mol%Sm^(3+)ion doping content.The dipole-dipole interaction resulting in cross relaxation is found to be the principal cause of concentration quenching mechanism.The color features such as Commission Internationale de I’Eclairage(CIE)and correlated color temperature(CCT)were studied in detail.The optimized chromaticity coordinates were estimated to be(0.6363,0.3632),which fall in the reddish-orange region.The average CCT value obtained is 3362 K.The average color purity is found to be~82%.Sm^(3+)incorporated Ca_(2)MgSi_(2)O_(7) samples are possible contender for single white light generation commercial candidates owing to their strong hypersensitivity of Sm
关 键 词:Green combustion PHOTOLUMINESCENCE Orange-red emission Color purity Sensors Rare earths
分 类 号:TQ422[化学工程] TB383.1[一般工业技术—材料科学与工程] TP212[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...