检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yating Fang Hui Shen Yudie Ma Shijie Liao Shuang Xia Tian Tian Ding Zhou Yunfeng Ma Jiayue Xu
机构地区:[1]Institute of Crystal Growth,School of Materials Science and Engineering,Shanghai Institute of Technology [2]National Engineering Center of Electromagnetic Radiation Control Materials,School of Electronic Science and Engineering,University of Electronic Science and Technology of China
出 处:《Journal of Rare Earths》2024年第6期1110-1117,I0004,共9页稀土学报(英文版)
基 金:Project supported by Joint Fund NSAF of National Natural Science Foundation of China;China Academy ofEngineering Physics(U2130124);Shanghai Municipal Commission of Economy and Informatization,China(GYQJ-2020-1-19);theNational Natural Science Foundation of China(52172121)。
摘 要:Y_(3)Fe_(5)O_(12)(YIG)crystals are highly desirable for the fabrication of mid-infrared isolators with the rapid growth of optical communications,although it is rather challenging to grow large size and high-quality single crystals.Dy^(3+)doping is expected to improve the optical and magneto-optical prope rties.However,high quality Dy:YIG crystals and the adjustment of Dy^(3+)on the structure and optical behavior of YIG crystal remain unclear,impeding its practical applications.Herein,a series of Y_(3-x)Dy_(x)Fe_(5)O_(12)(x=0,0.5,1.0,1.5,3)solid solution crystals was grown by the flux-Bridgman method and single crystals up to 25 mm were obtained.With the introduction of Dy^(3+),lattice parameters are gradually enlarged from 1.2379 nm(YIG)to 1.2420 nm(DyIG).Typical Dy^(3+)absorption peaks are observed around 1070,1265 and 1670 nm.The refractive index decreases from 2.37(500 nm)to 2.10(2500 nm)for YIG crystal,and it reduces from 2.47(500 nm)to 2.16(2500 nm)for DyIG crystal.The optical bandgaps remain almost unchanged for Dy:YIG crystals.The optical dispersion of the refractive indices was finely fitted by the Wemple and DiDomenico(WDD)and the Sellmeier models,respectively.With the increase of Dy^(3+)content,the saturation magnetization(Ms)decreases significantly from 23.62 emu/g(YIG)to 5.33 emu/g(DyIG).Small coercive field is persisted for this system,endowing small external magnetic field.These results provide valuable references for the manipulation of rare earths on the properties of magnetooptical crystals,which is beneficial to the design of high-performance garnet crystals for the application of optical switching and non-reciprocal related devices.
关 键 词:Magneto-optical crystal Yttrium iron garnet Dy^(3+)doping Crystal growth Optical dispersion Rare earths
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.137.94