检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱拓基 林浩申 赵伟豪 王靖 杨晓君 ZHU Tuoji;LIN Haoshen;ZHAO Weihao;WANG Jing;YANG Xiaojun(School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China;Unit 96901 of PLA,China)
机构地区:[1]广东工业大学信息工程学院,广州510006 [2]中国人民解放军96901部队
出 处:《计算机工程与应用》2024年第13期81-91,共11页Computer Engineering and Applications
基 金:广东省自然科学基金面上项目(2021A1515011141);国家部委基金;国家自然科学基金青年项目(61904041)。
摘 要:对称非负矩阵分解(SNMF)能够自然地捕获图表示中嵌入的聚类结构,是线性和非线性数据聚类应用的重要方法。但其对变量的初始化较敏感,初始化矩阵的质量好坏会较大地影响聚类性能,且在半监督聚类中面临着从有限的标记数据中学习更具辨别力表示的挑战。针对以上问题,提出了一种约束传播自适应半监督非负矩阵分解聚类算法(constrained propagation self-adaptived semi-supervised non-negative matrix factorization clustering algorithm,CPS3NMF)。该算法将有限约束传播到无约束数据点,构建出带有约束信息的相似矩阵,所获得的相似矩阵充当SNMF中分解的非负对称矩阵,还用于对分配矩阵进行图正则化,充分利用约束信息来保存数据空间的几何结构。同时结合SNMF对初始化特征的敏感性,使用自适应学习的权重对多个初始化矩阵的质量进行排序,集成多次聚类结果来逐步提高半监督聚类性能。在6个公开数据集上进行实验表明所提出的CPS3NMF算法优于其他先进算法,证明了其在半监督聚类中的有效性。Symmetric non-negative matrix factorization(NMF)can naturally capture the embedded clustering structure in the graph representation.It is an important method for linear and nonlinear data clustering applications.However,it is sensitive to the initialization of variables,and the quality of the initialization matrix greatly affects the clustering performance.In semi-supervised clustering,it faces the challenge of learning a more discriminative representation from limited labeled data.This paper introduces a constrained propagation self-adaptive self-supervised non-negative matrix factorization clustering algorithm(CPS3NMF)to solve the above problems.The algorithm propagates finite constraints to unconstrained data points,constructing a similarity matrix imbued with constraint information.The resultant similarity matrix serves the role of a non-negative symmetric matrix decomposition in SNMF and functions as graph regularization for the assignment matrix,fully utilizing the limited constraint information to preserve the geometrical structure of data space.Concurrently,leveraging the sensitivity of initial features in SNMF,the algorithm employs adaptively learned weights to rank the quality of multiple initial matrices.By integrating results from multiple clustering attempts,it progressively enhances the performance of semi-supervised clustering.Experiments on 6 public datasets show that the proposed CPS3NMF algorithm outperforms other state-of-the-art algorithms,proving its effectiveness in semi-supervised clustering.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188