基于多模型融合的室内行人航迹推算建模与性能分析  被引量:1

Modeling and performance analysis of indoor PDR based on multi-model fusion

在线阅读下载全文

作  者:丁飞[1,2] 朱跃 艾成万 孙进 张登银 DING Fei;ZHU Yue;AI Chengwan;SUN Jin;ZHANG Dengyin(Jiangsu Province Key Laboratory of Broadband Wireless Communications and Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing,Jiangsu 210003,China;School of Internet of Things,Nanjing University of Posts and Telecommunications,Nanjing,Jiangsu 210003,China)

机构地区:[1]南京邮电大学江苏省宽带无线通信和物联网重点实验室,江苏南京210003 [2]南京邮电大学物联网学院,江苏南京210003

出  处:《江苏大学学报(自然科学版)》2024年第4期456-463,共8页Journal of Jiangsu University:Natural Science Edition

基  金:教育部-中国移动科研基金资助项目(MCM20170205);江苏省“六大人才高峰”高层次人才计划项目(DZXX-008)。

摘  要:针对行人航位推算(pedestrian dead reckoning,PDR)室内信号易受到环境和多径效应干扰的问题,提出一种基于多模型融合的室内PDR优化建模方法.给出多模型融合的室内PDR建模方法系统模型,包括步数检测、步长推算、方向推算以及位置推算4个关键阶段.该方法在步数检测阶段融合了峰值检测算法、局部最大值算法以及提前过零检测算法;在步长推算阶段融合Weinberg方法和Kim方法,并利用卡尔曼滤波算法校正步数检测和步长推算的误差.基于不同场景从步数、步长、方向、位置误差方面与传统算法进行比较.结果表明,该组合模型结合了传统步数检测和步长推算算法的特征识别结果,可实现对步数检测、步长推算过程中信号特征的优化处理;在手持场景下,步数检测识别准确,步长推算中值误差在0.060 m以内,方向推算平均绝对误差最小为3.06°,位置推算平均误差为0.2353 m,取得较好的室内步行状态识别与定位性能.To solve the problem that the pedestrian dead reckoning(PDR)indoor signals were susceptible to interference from environment and multipath effects,the optimal indoor PDR modelling method based on multi-model fusion was proposed.The system model of the multi-model fusion indoor PDR modelling approach was given with four key stages of step detection,step length projection,direction projection and position projection.In the step detection stage,the peak detection algorithm,local maximum algorithm and advance over zero detection algorithm were integrated,and in the step projection stage,the Weinberg method and Kim method were integrated.The Kalman filter algorithm was used to correct the errors of step detection and step projection.The comparison with traditional algorithms in terms of step number,step length,direction and position errors in different scenarios was completed.The results show that the fused model combines the feature recognition results of traditional step detection and step length estimation algorithms,which can realize the optimization of signal characteristics in the process of step detection and step length estimation.In the handheld scene,the step detection is accurate,and the step length estimation median error range is 0.060 m or less with the minimum direction estimation average absolute error of 3.06°and the position estimation average error of 0.2353 m,which achieves good indoor walking status recognition and position estimation performance.

关 键 词:行人航位推算 室内定位 步数检测 步长推算 方向推算 位置推算 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象