基于热流固耦合仿真的高压涡轮叶片寿命评估  

Life Assessment of High Pressure Turbine Blade based on Thermal-Fluid-Solid Coupling Simulation

在线阅读下载全文

作  者:范满意 陈祎凡 孔祥兴 张会生[2] FAN Manyi;CHEN Yifan;KONG Xiangxing;ZHANG Huisheng(Basic&Applied Research Center,Aero Engine Academy of China,Beijing,China,101304;School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai,China,200240)

机构地区:[1]中国航空发动机研究院基础与应用研究中心,北京101304 [2]上海交通大学机械与动力工程学院,上海200240

出  处:《热能动力工程》2024年第5期175-182,194,共9页Journal of Engineering for Thermal Energy and Power

基  金:中国航发产学研基金合作项目(HFZL2019CXY028);国家科技重大专项(2019-0019-0018)。

摘  要:为了解决发动机热端部件剩余寿命评估难题,以高压涡轮一级叶片为研究对象,提出了一种基于有限元和神经网络的联合预测模型。首先,采用热流固耦合仿真技术为寿命理论模型提供初始数据及考核部位;然后,考虑疲劳蠕变的交互作用,结合工程应用经验与时间-寿命分数法,创建剩余寿命评价指标;最后,为提高寿命预测的快速性和经济性,基于有限元仿真分析数据和神经网络算法,构建并训练叶片寿命预测模型。实际数据的验证结果表明:该模型预测结果与国外商用软件的剩余寿命评估指标接近;一级静叶和一级动叶的等效运行时间相对误差分别在1%和3%以内。To solve the remaining life assessment problem of engine hot end components,a joint predic-tion model based on finite element and neural network was proposed taking the first stage blade of high-pressure turbine as the research object.Firstly,the thermal-fluid-solid coupling simulation technology was applied to provide initial data and assessment parts for the life theory model;then,combining engi-neering application experience with the time-life fraction method,the remaining life evaluation index was determined considering the interaction of fatigue and creep;finally,in order to improve the rapidity and economy of life prediction,a blade life prediction model was established and trained based on finite ele-ment simulation data and neural network algorithms.The validation results of actual data indicate that the predicted results of the model are close to the remaining life evaluation index provided by foreign commer-cial software;the relative errors of the equivalent operating time of the first stage stationary blade and the first stage rotor blade are within 1% and 3%,respectively.

关 键 词:寿命预测 有限元仿真 热流固耦合 疲劳蠕变交互作用 

分 类 号:V232.4[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象