检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨永清[1] 孙凯 张媛媛[1] 樊治平 YANG Yongqing;SUN Kai;ZHANG Yuanyuan;FAN Zhiping(School of Management Science and Engineering,Shandong Technology and Business University,Yantai 264005,China;School of Business Administration,Northeastern University,Shenyang 110169,China)
机构地区:[1]山东工商学院管理科学与工程学院,山东烟台264005 [2]东北大学工商管理学院,辽宁沈阳110169
出 处:《情报科学》2024年第4期27-35,42,共10页Information Science
基 金:国家社会科学基金项目“网络圈群社交行为形成机理及舆情治理机制研究”(20BSH151)。
摘 要:【目的/意义】对突发事故灾难舆情信息进行精准画像,实现高传播信息的早期分类与识别,并实施精准化的引导对策。【方法/过程】以长沙自建房倒塌事件的微博数据为例,首先使用熵权法对信息传播效果进行评价,其次采用K-Modes聚类对高传播信息构建信息画像,最后基于XGBoost算法构建分类预测模型,并比较不同模型的预测效果。【结果/结论】根据信息画像可将突发事故灾难舆情信息划分为“高传播-官方救援报道类信息”“高传播-官方事故处置类信息”“高传播-大V情感表达类信息”“高传播-官方事故损失类信息”和“低传播信息”五类。同时,XGBoost算法相比其他机器学习分类算法预测性能最好,准确率可达93.94%。【创新/局限】提出一种基于画像的网络舆情信息传播效果的预测方法,以实现对突发事故灾难舆情信息的精准预测;未来会增加多个舆情事件作为数据集并结合深度学习算法,进一步提升模型预测效果。【Purpose/significance】To accurately portray public opinion information on accident disasters,to realize the early classification and identification of highly disseminated information,and to make precise guidance measures.【Method/process】Taking the microblogging data of the self-built house collapse in Changsha as an example,we firstly use the entropy weight method to evaluate the information dissemination effect,secondly,use K-Modes clustering to construct an information portrait of the highly disseminated information and finally build a classification prediction model based on the XGBoost algorithm and compare the prediction effect of different models.【Result/conclusion】Based on the information portrait,we can classify public opinion information on accident disasters into five categories:"highly disseminated-official accident rescue information","highly disseminated-official accident penalty information","highly disseminated-self-media emotional information","highly disseminated-official accident loss information"and"lowly disseminated information."Meanwhile,the XGBoost algorithm has the best prediction performance compared with other algorithms,with an accuracy rate of 93.94%.【Innovation/limitation】We propose a method for predicting the effect of online public opinion information dissemination based on portraits to realize the problem of accurate prediction of public opinion information on accident disasters;we will add multiple public opinion events as datasets and combine them with deep learning algorithms to further improve the model effect.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15