基于人工智能技术的高职英语生态教学模式构建研究  被引量:2

Research on the Construction of Ecological Teaching Model of English in Higher Vocational Colleges Based on Artificial Intelligence

在线阅读下载全文

作  者:崔媛[1] CUI Yuan(Hunan Chemical Vocational Technology College,Zhuzhou 412004,Hunan)

机构地区:[1]湖南化工职业技术学院,湖南株洲412004

出  处:《湖南工业职业技术学院学报》2024年第2期110-115,121,共7页Journal of Hunan Industry Polytechnic

基  金:2020年度湖南省教育科学规划课题“基于人工智能技术的高职英语生态教学模式研究与实践”(项目编号:XJK20BZY051);2021年度湖南教育科学研究工作者协会高等教育一般课题“‘三教’改革背景下高职英语教师专业能力建设研究”(项目编号:XJKX21B036)。

摘  要:人工智能等现代信息技术在教育领域的渗透正日渐深入,这给高职英语教学带来了巨大的变革,推动了教学方式的革新和教育资源的优化配置,但人工智能等现代信息技术与高职英语教学的融合过程中衍生出智慧课堂生态系统失衡的现象。针对当前高职英语课堂生态失衡问题,运用教育生态学理论分析基于人工智能技术的高职英语课堂生态平衡的构建策略,形成基于人工智能技术的高职英语生态教学模式,构建人工智能背景下教师、学生和课堂生态环境、教学评价等高职英语生态模式,创建和谐、高效、共生的生态课堂,推动高职英语教学模式向智能化变革。Artificial intelligence,known as modern information technologies,is increasingly penetrating into the field of education,which brings great changes in English teaching,promotes the innovation of teaching methods as well as the optimal allocation of teaching resources in higher vocational colleges.However,the imbalance phenomenon in the teaching ecosystem is derived from the integration of English teaching applied by artificial intelligence technology.Aiming at the imbalance phenomenon in the teaching ecosystem,this paper analyzes the construction strategies of ecological balance in English classes based on the ecology of education.It also constructs an ecological teaching model of English based on the artificial intelligence,and builds ecological model from the aspects of teachers,students,teaching environment and teaching evaluation.According to the ecological teaching model,a harmonious,efficient and symbiotic ecological teaching has been created,which could promote the intelligent transformation of English teaching mode in higher vocational colleges.

关 键 词:人工智能技术 高职英语教学 生态教学模式 

分 类 号:H319[语言文字—英语]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象