机构地区:[1]北京建筑大学环境与能源工程学院,北京100044 [2]大连理工大学化工学院,辽宁大连116023 [3]山东京博石油化工有限公司,山东滨州256500 [4]新疆骑马山热力有限公司,新疆乌鲁木齐830063
出 处:《化工进展》2024年第6期3029-3041,共13页Chemical Industry and Engineering Progress
基 金:北京学者计划(2015NO.022);北京市教育委员会科研计划(KM202310016006);北京建筑大学博士研究生科研能力提升项目(DG2022015);新疆维吾尔自治区重大科技专项(2022A01002-4)。
摘 要:炼化装置加热炉为石油炼化生产工艺中高能耗、高碳排放设备之一,但低温下烟气冷凝水会腐蚀换热设备,增设排烟余热回收换热设备还会增加烟气系统阻力,对生产工艺造成影响,降低加热炉燃烧效率。排烟余热回收利用系统的防腐、高效、低阻力及烟压控制是余热回收系统能效最大化技术难题。本文以炼化装置加热炉为对象,以烷烃脱氢加热炉为例,提出加热炉低温排烟余热深度回收协同炉膛烟压控制系统方案,采用自主研发的防腐、高效、低阻力排烟余热回收设备,建立加热炉低温排烟余热回收利用节能改造示范工程,并跟踪实测,将实测值与理论值进行对比。结果表明:该系统可将炉膛烟压控制在满足生产工艺要求范围内,控制精度达(-35±6.4)Pa;排烟温度由178.3~178.7℃降至54.3~78.7℃,系统节能率达4.75%~6.9%,烟气余热回收率达28.1%~40.4%,其中梯级换热比单级换热性能提高43.8%,(火用)效率可达52.8%~63.7%,并减少CO_(2)排放2884.5~4197.9t/a,且降低NO_(x)和SO_(2)等污染物排放,节能、减污、降碳效果显著。为炼化装置加热炉的排烟低温余热利用技术开发与应用提供了参考和示范。The refinery heating furnace is one of the high energy consumption and high carbon emission equipment in the petroleum refining process.Flue gas waste heat recovery of the refinery heating furnace plays an important role in reducing pollutants and carbon emissions for petrochemical industry,but low-temperature flue gas condensate can corrode heat exchanger,and the flue gas condensing heat exchanger(FGCHE)added at the rail of heating furnace increases flue gas pressure drop,affecting refinery production process and the combustion efficiency of the heating furnace.The anti-corrosion,high efficiency and low-pressure-drop FGCHE with cooperative flue gas pressure control become technical challenges to improve the maximizing energy efficiency of flue gas heat recovery and utilization system.Taking alkane dehydrogenation heating furnace in the refining plant as an example,the low-temperature flue gas deep waste heat recovery with cooperative flue gas pressure control system(FGHR-PCS)was proposed,and its demonstration project was established,then the FGHR-PCS under the working conditions both of stepped and no-stepped heat transfer was tested on site.Energy-saving operating characteristics were analyzed and compared with the theoretical value.The results showed that the accuracy of flue gas pressure in the heating furnace chamber control reached(-35±6.4)Pa,meeting the requirement of the production process.Meanwhile,the flue gas temperature of the alkane dehydrogenation heating furnace was reduced from 178.3-178.7℃to 54.3-78.7℃,the energy saving efficiency reached 4.75%-6.9%,the flue gas waste heat recovery ratio reached 28.1%-40.4%,the flue gas heat recovery amount in the stepped heat transfer stage was 43.8%higher than that in the no-stepped heat transfer stage,and the exergy efficiency of the FGCHE reached 52.8%-63.7%.At the same time,the flue gas energy saving of the FGHR-PCS was beneficial to reduce carbon and pollutant emissions(NO_(x)and SO_(2)),and the carbon reduction emissions could reach 2884.5-4197.9t/a,w
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...