检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:雷欣南 林乐凡 肖斌卿[1] 俞红海[1] Lei Xinnan;Lin Lefan;Xiao Binqing;Yu Honghai(School of Management and Engineering,Nanjing University,Nanjing 210093,China)
出 处:《中国管理科学》2024年第5期1-12,共12页Chinese Journal of Management Science
基 金:国家自然科学基金项目(72342024);国家社会科学基金重大项目(19ZDA105);国家自然科学基金面上项目(72071102,71671083);国家自然科学基金重点国际合作项目(71720107001)。
摘 要:机器学习方法已经被应用于小微企业贷款审批和监测过程,并且在违约识别方面取得了良好效果,但是机器学习系统决策过程的不可见性导致其在违约特征识别领域未能得到进一步实际应用。基于某银行的小微企业贷款微观数据,在机器学习模型基础上加入SHAP(SHapley Additive exPlanations)解释方法对小微企业的违约特征进行研究比较,研究兼顾了实际情境中判别准确性和指标可解释的要求。研究发现,除传统的贷款信息与企业财务指标外,违约的核心特征中企业年龄、被告案件数量以及客户经理评价“软信息”等非财务指标对于识别小微企业违约具有重要价值。本文从可解释性的角度探讨机器学习方法在小微企业违约特征识别的应用,创新性地引入SHAP解释方法研究评级中的重要指标,同时所挖掘的关键指标对贷款业务开展具有指导意义。Machine learning methods have been applied to the small and micro enterprises’loan approval and monitoring process,and have achieved good results in default identification.Considering the higher recognition accuracy of machine learning methods,its use of indicator information should be better than traditional models.Therefore,it hopes to dig out the important factors in the judgment of default from the perspective of machine learning in this paper.SHAP is a machine learning interpretation method based on the Shapley value of game theory,which can identify the importance of indicators in the model from the perspective of results.Based on the small and micro enterprise loan account of a bank,SHAP(SHapley Additive exPlanations)is added to machine learning models to find important default characteristics of small and micro enterprises.It is found that,in addition to traditional loan information and corporate financial indicators,non-financial indicators such as the age of the company,the number of law cases,and the“soft information”evaluated by the customer manager play significant role in identifying defaults of small and micro enterprises.From the perspective of interpret⁃ability,the application of machine learning methods is discussed in the identification of default characteristics of small and micro enterprises,and innovatively the SHAP interpretation method is introduced to study important indicators in rating.At the same time,the key indicators mined have guiding significance for the development of loan business.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.241.171