检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:滕艾均 袁欣然 张东彬 辛亚男 刘天豪 韩慧果 杜光超[3] Teng Aijun;Yuan Xinran;Zhang Dongbin;Xin Yanan;Liu Tianhao;Han Huiguo;Du Guangchao(Ansteel Beijing Research Institute Co.,Ltd.,Beijing 102211,China;Chengdu Advanced Metal Materials Industry Technology Research Institute Co.,Ltd.,Chengdu 610300,Sichuan,China;Pangang Group Research Institute Co.,Ltd.,State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization,Panzhihua 617000,Sichuan,China)
机构地区:[1]鞍钢集团北京研究院有限公司,北京102211 [2]成都先进金属材料产业技术研究院股份有限公司,四川成都610300 [3]攀钢集团研究院有限公司,钒钛资源综合利用国家重点实验室,四川攀枝花617000
出 处:《钢铁钒钛》2024年第2期7-12,共6页Iron Steel Vanadium Titanium
基 金:国家重点研发课题(储能电池用钒基正极材料及高浓度全钒电解液制备技术,2023YFC2908305);国家重点研发课题(钒铬中间体可控还原短程制备高附加值产品技术,2022YFC3901004)。
摘 要:基于钒基聚阴离子化合物价格昂贵、颗粒粒度大、导电性差等问题,利用掺杂铁元素来部分替代钒元素,实现新型磷酸钒铁钠材料的制备。通过XRD、SEM、UV-vis、激光粒度、BET等表征手段,分析了磷酸钒铁钠的物相信息和储钠性能。研究结果表明,Fe元素的引入不仅实现了材料成本的降低,同时使得所制备的磷酸钒铁钠相比于磷酸钒钠具有更小的粒径、更大的比表面积和更优的电导率。其比表面积为46.5 m^(2)/g,优于磷酸钒钠的16.3 m^(2)/g,压实密度达到1.85 g/cm^(3),高于磷酸钒钠的1.79 g/cm^(3)。同时,磷酸钒铁钠表现出更高的储能性能。在1 mA/g电流密度条件下,磷酸钒铁钠的放电比容量达到99.1 mAh/g,大于相同放电电流密度下磷酸钒钠的91.9 mAh/g。同时,10次循环后仍能保持85.3 mAh/g的放电比容量(相同情况下,磷酸钒钠的放电比容量为79.9 mAh/g),表现出良好的循环稳定性。Due to the high price,large particle size and poor conductivity of vanadium based polyanion compounds,a new type of sodium ferric vanadium phosphate material was prepared by doping iron element to partially replace vanadium element.The phase information and sodium storage properties of sodium ferric vanadium phosphate were analyzed by XRD,SEM,UV-vis,laser particle size and BET.The research results show that the introduction of Fe element not only reduces the material cost,but also makes the prepared sodium ferric vanadium phosphate have the smaller particle size,larger specific surface area and better electrical conductivity compared with sodium vanadium phosphate.The specific surface area of sodium ferric vanadium phosphate is 46.5 m^(2)/g,and the compaction density is 1.85g/cm^(3),which is higher than that of the sodium vanadium phosphate,while 16.3 m^(2)/g for the specific surface area and 1.79 g/cm^(3) for the compaction density of sodium vanadium phosphate.Meanwhile,the obtained sodium ferric vanadium phosphate shows higher energy storage performance.Under the condition of current density at 1 mA/g,the discharge specific capacity of sodium ferric vanadium phosphate reaches 99.1 mAh/g,which is larger than that of sodium vanadium phosphate(91.9 mAh/g)at the same discharge current density.At the same time,after 10 charge and discharge cycles,the discharge capacity of 85.3 mAh/g can be maintained(in the same condition,79.9 mAh/g of the discharge capacity can be maintained for the sodium vanadium phosphate),showing good cycle stability.
分 类 号:TQ265.3[化学工程—有机化工] TM26[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3