基于深度强化学习的车载边缘计算功率分配方法  

A Power Allocation Algorithm in Vehicular Edge Computing Networks Based on Deep Reinforcement Learning

在线阅读下载全文

作  者:邱斌[1,2] 王云霄 肖海林 QIU Bin;WANG Yunxiao;XIAO Hailin(School of Information Science and Engineering,Guilin University of Technology,Guilin 541004,China;Guangxi Key Laboratory of Embedded Technology and Intelligent System,Guilin 541004,China;School of Computer Science and Information Engineering,Hubei University,Wuhan 430062,China)

机构地区:[1]桂林理工大学信息科学与工程学院,桂林541004 [2]广西嵌入式技术与智能系统重点实验室,桂林541004 [3]湖北大学计算机与信息工程学院,武汉430062

出  处:《北京邮电大学学报》2024年第2期81-89,共9页Journal of Beijing University of Posts and Telecommunications

基  金:国家自然科学基金项目(62341117);广西重点研发计划项目(桂科AB23026034,桂科AB23075175);湖北省高等学校优秀中青年科技创新团队计划项目(T2021001)。

摘  要:针对车载边缘计算环境下车辆移动引起的车载时变信道和任务随机到达问题,提出了一种基于深度强化学习的计算卸载和功率分配方法。首先,设计了双向车道场景下基于非正交多址的“端-边-云”三层卸载模型;接着,结合该模型的通信、计算、缓存资源以及车辆的移动性,进一步确立了车载用户功率和缓存延迟长期累积总成本最小化的联合优化问题;最后,考虑到车载边缘计算网络的动态、时变和随机特性,提出了基于深度确定性策略梯度的分布式智能算法,以获取最优功率分配机制。仿真实验结果显示,相较于传统方法,所提方法在减少总成本方面具有显著优势。To address the time-varying channel and stochastic task arrival problems caused by the mobility of vehicle in the vehicular edge computing environment,a deep reinforcement learning-based computation offloading and power allocation algorithm is proposed.First,we build a three-layer system model for end-edge-cloud orchestrated computing based on non-orthogonal multiple access in a two-way lane scenario.Then,by combining the communication,computing,cache resources and the mobility of vehicle,a joint optimization problem is designed to minimize the long-term cumulative total system cost consisting of power consumption and cache latency.Finally,considering the dynamics,time-varying and stochastic characteristics in vehicular edge computing networks,a decentralized intelligent algorithm based on deep deterministic policy gradient is proposed for obtaining the power allocation optimization.Compared with conventional baseline algorithms,the simulation results demonstrate that the proposed algorithm can achieve a superior performance in reducing the cost of the total system.

关 键 词:车载边缘计算 计算卸载 功率分配 服务缓存 深度确定性策略梯度 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象